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Abstract. We present a strategy for the systematization of manipulations and calculations involving
divergent (or not) Feynman integrals, typical of the one-loop perturbative solutions of QFT, where the use
of an explicit regularization is avoided. Two types of systematization are adopted. The divergent parts are
put in terms of a small number of standard objects, and a set of structure functions for the finite parts
is also defined. Some important properties of the finite structures, specially useful in the verification of
relations among Green’s functions, are identified. We show that, in fundamental (renormalizable) theories,
all the finite parts of two-, three- and four-point functions can be written in terms of only three basic
functions while the divergent parts require (only) five objects. The final results obtained within the proposed
strategy can be easily converted into those corresponding to any specific regularization technique providing
an unified point of view for the treatment of divergent Feynman integrals. Examples of physical amplitudes
evaluation and their corresponding symmetry relations verification are presented as well as generalizations
of our results for the treatment of Green’s functions having an arbitrary number of points are considered.

1 Introduction

The framework of quantum field theory (QFT) has, un-
doubtedly, become the main tool for the phenomenological
description of fundamental interacting particles. Within
this formalism, in principle, it is possible to investigate
the physical consequences of any set of symmetries for the
dynamics of any set of interacting fields. We have at our
disposal a clear prescription to construct the corresponding
Lagrangian densitywhich is simultaneously invariant under
space-time, global and local gauge symmetries that are sup-
posed to be relevant. After this, the associated equations of
motion for all the fields can be derived from the variational
Hamilton principle. The solution of the equations thus ob-
tained would allow us to describe in a detailed way all the
pertinent physical processes. Unfortunately the last step
cannot be performed in practical situations and we need to
have recourse to perturbative methods for the solutions.
The predictions are stated to a previously chosen order
in the perturbative parameter. A set of Green’s functions,
which allows the connection among the external particles
characterizing a specific physical process, needs to be evalu-
ated. Such Green’s functions are constructed following the
corresponding Feynman rules involving propagators, ver-
tex operators and combinatorial factors. Given the small
number of ingredients, the perturbative amplitudes possess
very general and common mathematical aspects. Thus it
is possible to expect that the necessary manipulations and
calculations may admit some systematization, in order to
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simplify the handling of the results for the finite as well as
for the divergent parts of Feynman integrals.

Given the fact that almost all the definite predictions
of a QFT go through the evaluation of perturbative am-
plitudes some manipulations involving divergent Feynman
integrals are always necessary, an eventual simplification of
such procedures would be very useful. This is precisely the
purpose of the present contribution. We propose a calcula-
tional strategy [1] involving two types of systematization.
The first one refers to the manipulations of divergent inte-
grals which are made without adopting an explicit regular-
ization so that the performed steps are also useful for the
reader who wants to use a specific regularization technique.
The results which we will present can be easily converted
to the ones corresponding to any regularization method
providing the evaluation of a small number of standard
divergent objects [2]. The second type of systematization
refers to the finite parts. A set of functions which are suf-
ficient to write the one-loop physical parts of the ampli-
tudes is identified. Studying relations among such a class
of functions we will show that it is possible to reduce all the
amplitudes to a small number of mathematical structures:
one for each number of points or, equivalently, for each
number of internal loop propagators in the perturbative
Green’s functions. Clearly, this feature allows us to obtain
numerical results in a very simplified way, as we will show.

For the finite parts, we will also identify properties relat-
ing the referred functions corresponding todifferent number
of points, which substantially simplifies the verification of
symmetry relations involving perturbative physical ampli-
tudes. Besides, such a decomposition emphasizes in a very
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clear way physical aspects relative to unitarity which are
contained in the perturbative amplitudes as well as it allows
for a systematization for the study of several kinematical
limits of physical interest. Such studies can be performed
without the contamination of mathematically undefined
quantities, ambiguities or regularization dependence as is
usually made in the context of traditional 4D regulariza-
tion techniques. Within the context of the dimensional
regularization (DR) method [3], many of these undesirable
aspects can be avoided in a consistent way. Due to this rea-
son, a series of valuable works has been and continues to
be done in order to construct useful systematizations spe-
cially to one-loop Feynman integrals. In particular, many
years ago ’t Hooft and Veltman [4] have derived a set of
useful formulas for scalar (one-loop) integrals. At the same
time Passarino and Veltman [5] studied tensor integrals
and proposed a way to reduce tensor integrals to scalar
ones. Alternative approaches were derived in [6–14]. This
subject gained new interest in the literature specially due
to practical limitations of the Passarino–Veltman approach
in the treatment of integrals in massless theories because of
infrared divergences. Another motivation is the increasing
complexity of multi-particle experiments made in colliders
which requires a more efficient systematization of one-loop
Feynman integrals with a large number of points (external
lines). In this direction there are many recent works in the
literature (see, for example [11–20] and references therein)
where the authors are worried mainly with the trouble of
massless propagators.

The present work is organized as follows. In Sect. 2 we
define a set of one-loop Feynman integrals which will be
considered in the discussions. The calculational strategy
used to manipulate and calculate the divergent integrals is
discussed, and the divergent standard objects are defined
in Sect. 3. In order to systematize the finite parts of the
integrals, in Sect. 4 we introduce a set of structures and
present some of their relevant properties, which are useful
for a simple organization of the results for perturbative
physical amplitudes as well as for a systematic verification
of symmetry relations involving them. In Sect. 5 we perform
the calculations of Feynman integrals in terms of the intro-
duced structures for the divergent and finite structures. In
Sect. 6 we consider the explicit evaluation of perturbative
physical amplitudes which symmetry relations are consid-
ered in Sects. 7 and 8. Generalizations of our results to an
arbitrary number of points are presented in Sect. 9 and,
finally, in Sect. 10 we present our final remarks.

2 Basic one-loop Feynman integrals

We start observing that all perturbative amplitudes after
performing eventual Dirac traces and/or other operations
related to internal symmetries reduce to a combination of
Feynman integrals. Some of them can be divergent struc-
tures. For the fundamental theories only a relatively small
number of such undefined objects needs to be treated. The
most simple ones are those with the most severe degrees
of divergence; the one-point function integrals, which we

define as

(I1; I
µ
1 ) =

∫
d4k

(2π)4
(1; kµ)

P (k1, m)
, (1)

where P (ki, m) = (k + ki)
2−m2. A cubic degree of diver-

gence can be identified in I1µ(k1) as well as a quadratic
one in I1(k1). The two-point functions, on the other hand,
can be written as combinations of the integrals

(I2; I
µ
2 ; Iµν

2 ) =
∫

d4k

(2π)4
(1; kµ; kµkν)

P (k1, m) P (k2, m)
. (2)

The highest degree of divergence, the quadratic one, ap-
pears in I2µν(k1, k2). For the calculations of three-point
functions we need to evaluate the structures(

I3; I
µ
3 ; Iµν

3 ; Iµνλ
3

)

=
∫

d4k

(2π)4

(
1; kµ; kµkν ; kµkνkλ

)
P (k1, m) P (k2, m) P (k3, m)

. (3)

Some of the above structures are finite and the degree of
divergence is not higher than the linear one. An analogous
definition can be given for the four-point function integrals(

I4; I
µ
4 ; Iµν

4 ; Iµνλ
4 ; Iµναβ

4

)
(4)

=
∫

d4k

(2π)4

(
1; kµ; kµkν ; kµkνkλ; kµkνkαkβ

)
P (k1, m) P (k2, m) P (k3, m) P (k4, m)

.

The set of structures above is less problematic as far as
the divergences are concerned due to the fact that only
the logarithmic divergence is involved. In all previously
defined integrals k1, k2, k3 and k4 stand for the momenta
of the loop internal propagators which carry the mass m.
Such arbitrary internal momenta are related, in physical
amplitudes, to the external ones through their differences.
Given the divergent character of almost all structures de-
fined above, for the explicit evaluation we have to specify
some philosophy to deal with the mathematically unde-
fined quantities involved. Usually the calculations become
reliable only after adopting a regularization technique. Af-
ter this, in the intermediary steps, we invariably assume
some specific consequences for the results which are in-
trinsically associated to the properties attributed to the
divergent integrals by the adopted regularization. In the
final form thus obtained for the amplitudes in general, it
is not possible to specify in a clear way which are the par-
ticular effects of the adopted regularization for the results
or, in other words, to know precisely in what extension the
expression is dependent on the used technique. In order
to perform an analysis as general as possible of the prop-
erties of divergent amplitudes, including their symmetry
relations and the question of ambiguities related to the ar-
bitrariness involved in the routing of the loop internal lines
momenta, we have to avoid, as much as possible, specific
choices in intermediary steps in such a way that all the
possibilities remain still contained in the final results. If
this is possible, we can change the usual focus of analy-
sis, which is the verification by testing the consistency of
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the adopted regularization technique, to the identification
of properties such a technique must have in order to be
consistent. Having this in mind, we describe in the next
section the calculational strategy we will adopt.

3 The strategy to handle
divergent Feynman integrals

Instead of specifying a regularization, we will adopt an
alternative strategy [1] to perform all the calculations. To
justify all the intermediate manipulation, we will assume
the presence of a generic regulating distribution only in an
implicit way. This can be schematically represented by∫

d4k

(2π)4
f(k)→

∫
d4k

(2π)4
f(k)

{
lim

Λ2
i →∞

GΛi

(
k, Λ2

i

)}

=
∫

Λ

d4k

(2π)4
f(k). (5)

Here the Λi are parameters of the generic distribution
G(Λ2

i , k) which in addition to the obvious finite character
of the modified integral must have two other very general
properties. It must be even in the integrating momentum k,
due to Lorentz invariance maintenance, and a well-defined
connection limit must also exist, i.e.,

lim
Λ2

i →∞
GΛi

(
k2, Λ2

i

)
= 1.

The first property implies that all integrals having odd in-
tegrands vanish, while the second one guarantees, in par-
ticular, that the value of finite integrals in the amplitudes
will not be modified. Note that these requirements are com-
pletely general and are in agreementwith any reasonable 4D
regularization. After these assumptions we can manipulate
the integrand of the divergent integrals by using identities
to generate a mathematical expression where all the diver-
gences are contained in momenta independent structures.
Due to the fact that in perturbative amplitudes we always
have propagators, an adequate identity to achieve this goal
is the following:

1
(k + ki)

2 −m2
=

N∑
j=0

(−1)j (
k2

i + 2ki · k
)j

(k2 −m2)j+1 (6)

+
(−1)N+1 (

k2
i + 2ki · k

)N+1

(k2 −m2)N+1
[
(k + ki)

2 −m2
] ,

where ki is (in principle) an arbitrary momentum used
in the routing of an internal line. The value for N in the
above expression can be adequately chosen to avoid un-
necessary algebraic difficulty. It can be taken as the minor
value that leads the last term in the above expression to
a finite integral. As a consequence, all the momentum de-
pendent parts of the amplitudes can be integrated without
restrictions due to the connection limit requirement. In
the divergent structures this way obtained, on the other

hand, no additional assumptions are taken, and (in the
present discussion) they are written as a combination of
five objects, namely

�αβµν

=
∫

Λ

d4k

(2π)4
24kµkνkαkβ

(k2 −m2)4
−
∫

Λ

d4k

(2π)4
4gαβkµkν

(k2 −m2)3

−
∫

Λ

d4k

(2π )4
4gανkβkµ

(k2 −m2)3
−
∫

Λ

d4k

(2π)4
4gαµkβkν

(k2 −m2)3
, (7)

∆µν

=
∫

Λ

d4k

(2π)4
4kµkν

(k2 −m2)3
−
∫

Λ

d4k

(2π)4
gµν

(k2 −m2)2
, (8)

∇µν

=
∫

Λ

d4k

(2π)4
2kνkµ

(k2 −m2)2
−
∫

Λ

d4k

(2π)4
gµν

(k2 −m2)
, (9)

Ilog(m2) =
∫

Λ

d4k

(2π)4
1

(k2 −m2)2
, (10)

Iquad(m2) =
∫

Λ

d4k

(2π)4
1

(k2 −m2)
. (11)

It is important to emphasize that with this strategy it be-
comes possible to map the final expressions obtained by
us into the corresponding results of other techniques, due
to the fact that all the steps are perfectly valid within
reasonable regularization prescriptions, including the DR
technique. All we need is to evaluate the divergent struc-
tures obtained in the specific philosophy which we want
to contact.

Another aspect of the procedure is the similarity with
theR-operation [21]; in theBPHZ [22]methodwith the sub-
traction procedures made in the dispersion relation tech-
nique. The identity (6), which addresses such a similarity,
does not play crucial role but is only used to put the in-
tegrals in the desired form; the total dependence on the
internal momenta must be located in finite terms. For this
purpose any mathematical identity or procedure which al-
lows us to obtain the appropriate structure is adequate.
Subtraction procedures or a Taylor expansion in internal
lines momenta are certainly efficient tools.

In order to conclude this section it is interesting to call
the attention to another and crucial point, which refers to
the consistency of the regulator. The two properties as-
sumed, even in loop momentum and connection limit, are
very general and must be fulfilled by all reasonable regular-
ization. The conditions to be imposed over a specific choice
for the regularization will emerge, in our procedure, in con-
straints stated to the basic divergent objects ∇µν ,�αβµν ,
and ∆µβ defined above, as will become clear in future sec-
tions. This aspect is extensively discussed in [2].

4 Basic structure functions for finite parts

As a consequence of application of the procedure described
in the preceding section, we will invariably get finite inte-
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grals. After solving them, a careful analysis reveals that it
is always possible to identify a set of basic functions, one
for each number of points of the corresponding Green’s
functions. Such basic functions carry important informa-
tion about general QFT aspects in perturbative solutions,
like, for example, unitarity. Besides, due to the Ward iden-
tities, there must be relations among such basic functions
corresponding to different number of points of the associ-
ated Green’s functions. In addition, once we know that it is
always possible to reduce all the tensor Feynman integrals,
for each number of points, to only one scalar integral [5] it
is expected to find the corresponding reduction at the level
of the basic finite structure functions. Such a systemati-
zation could be very useful in the perturbative evaluation
of the one-loop amplitudes in all theories and models just
because in this type of reduction no handling of divergences
is involved. In what follows we define such a set of struc-
ture functions and present the properties which allow a
very simple systematization of the results for the Feynman
integrals defined in (1)–(4) which we present in Sect. 5.

4.1 Basic two-point structure functions

The Feynman integrals having two denominators, defined
in (2), after the use of the procedure described in Sect. 3,
present finite integrals. In order to write the results in as
simple as possible a way, it is convenient to introduce a set
of basic functions which we define as

Zk(p2, m2
1, m

2
2; λ

2) =
∫ 1

0
dx
[
xk
]
ln
(

Q (p, x)
−λ2

)
, (12)

where Q (p, x) = p2x(1−x)+(m2
1−m2

2)x−m2
1. In the above

definition, p is a momentum carried by an internal line or
a combination of them, m1 and m2 are masses carried by
the propagators and λ is a parameter with the dimension
of mass, which plays the role of a common scale for all
the involved physical quantities. In order to simplify the
notation, from now on we will adopt Z0

(
p2, m2, m2; m2

)
=

Z0(p2; m2) once we are dealing with only one species of
intermediate fermion.

The integration on the Feynman parameter x can be
easily performed. Proceeding this way we can write the
results as

Z0
(
p2; m2) = −2− h

(
p2; m2

)
2p2 , (13)

Z1
(
p2; m2) = −1− h

(
p2; m2

)
4p2 , (14)

Z2
(
p2; m2) (15)

= − 1
18
− 2

(
p2 −m2

)
3p2 −

(
p2 −m2

)
6p4 h

(
p2; m2) ,

where h(p2; m2) possesses three representations:
(i) p2 < 0 :

h
(
p2; m2) (16)

= 2
√
−p2
√

4m2 − p2 ln

{√
4m2 − p2 −

√
−p2√

−p2 +
√
−p2

}
,

(ii) 0 < p2 < 4m2:

h
(
p2; m2) = −4

√
p2
√

4m2 − p2 arctan

{ √
p2√

4m2 − p2

}
,

(17)
(iii) p2 > 4m2:

h
(
p2; m2)

= 2
√

p2
√

p2 − 4m2 ln

{√
p2 −

√
p2 − 4m2√

p2 +
√

p2 − 4m2

}

+2iπ
√

p2
√

p2 − 4m2, (18)

where we see that the function h(p2; m2) develops an imag-
inary part as is required by the unitarity. Given the ex-
pressions above, it is immediate to identify the relations
among the Zk(p2; m2) functions having different values for
the index k. The first of such relations are

Z1
(
p2; m2) =

1
2

Z0
(
p2; m2) , (19)

Z2
(
p2; m2) = − 1

18
+

2
3

Z1
(
p2; m2)− m2

3p2 Z0
(
p2; m2) ,

(20)

Z3
(
p2; m2) = − 1

24
+

3
4

Z2
(
p2; m2)− m2

2p2 Z1
(
p2; m2) ,

(21)

which show that for two-point functions all the results can
be reduced to only Z0(p2; m2). Such kinds of relations are
specially useful in verifications of Ward identities involving
two-point functions.

4.2 Basic three-point structure functions

When the evaluation of the finite parts of the Feynman inte-
grals defined in (3) is in order, it is interesting to introduce
the following functions:

ξnm (p, q) =
∫ 1

0
dx1

∫ 1−x1

0
dx2

xn
1xm

2

Q (p, x1; q, x2)
, (22)

where p and q are momenta of internal lines or a combi-
nation of them, and

Q (p, x1; q, x2) = p2x1 (1− x1) + q2x2 (1− x2)

−2 (p · q) x1x2 −m2.

Before considering some important properties of the above
defined functions, it is also interesting to introduce an-
other set of functions related to that (see Sect. 9). They
are defined as

ηnm

(
p, q; m2) (23)
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=
∫ 1

0
dx1

∫ 1−x1

0
dx2 [xn

1xm
2 ] ln

(
Q (p, x1; q, x2)
−m2

)
.

Thefirst important aspect related to the functions ξnm(p, q)
(ηnm(p, q; m2)) is the reduction of all of them only in terms
of ξ00(p, q) (η00(p, q; m2)). Let us start with those for which
n+m = 1. The first of them may be ξ01(p, q). After some al-
gebraic effort, which involves basically integration by parts,
we can write, for the case of equal masses,

ξ01 (p, q)

=
C1

2

{(
p · q − p2

p2q2

)
Z0

(
(p− q)2 ; m2

)

− p · q
p2q2 Z0

(
q2; m2) (24)

+
1
q2 Z0

(
p2; m2)+

(
q2 − p · q

q2

)
ξ00 (p, q)

}
.

Here we define C1 = p2q2
[
p2q2 − (p · q)2

]−1
. On the other

hand, ξ10(p, q) can be written as

ξ10 (p, q)

=
C1

2

{(
p · q − q2

p2q2

)
Z0

(
(p− q)2 ; m2

)

− p · q
p2q2 Z0

(
p2; m2)+

1
p2 Z0

(
q2; m2)

+
(

p2 − p · q
p2

)
ξ00 (p, q)

}
. (25)

In the last two equations above, we can note that both func-
tions are related. In fact there is a general property which
relates ξnm(p, q) to ξmn(p, q) which is the interchanging
symmetry p↔ q.

In order to give the corresponding explicit expressions
for the ξnm(p, q) functions corresponding to n + m = 2
it is interesting first to develop the η00(p, q; m2). Such a
function can be written as

η00
(
p, q; m2)

=
1
2

Z0

(
(p− q)2 ; m2

)
−
[

1
2

+ m2ξ00 (p, q)
]

+
1
2

p2ξ10 (p, q) +
1
2

q2ξ01 (p, q) . (26)

Now the explicit form for the function ξ20(p, q) and ξ02(p, q)
may be given by

ξ02 (p, q)

=
C1

2

{
(p · q)
2p2q2

[
Z0

(
(p− q)2 ; m2

)
− Z0

(
q2; m2)]

− 1
q2

[
1
2

Z0

(
(p− q)2 ; m2

)
− η00

(
p, q; m2)]

+
(

q2 − p · q
q2

)
ξ01 (p, q)

}
, (27)

and ξ20 (p, q) = ξ02(q, p). On the other hand, we note that
ξ11(p, q) admits two alternative forms. The first is

ξ11 (p, q)

=
C1

2

{ −1
2p2

[
Z0

(
(p− q)2 ; m2

)
− Z0

(
q2; m2)]

+
(p · q)
p2q2

[
1
2

Z0

(
(p− q)2 ; m2

)
− η00 (p, q)

]

+
(

p2 − p · q
p2

)
ξ01 (p, q)

}
, (28)

while the second one is obtained by interchanging p↔ q.
Next we can give explicit expressions for the ξnm(p, q)
functions for n + m = 3. For this purpose it is convenient
first to develop the ηnm(p, q; m2) functions for n + m = 1.
We get

η10
(
p, q; m2)

=
2
3

{
1
4

Z0

(
(p− q)2 ; m2

)
−
[

1
6

+ m2ξ10 (p, q)
]

+
1
2

q2ξ11 (p, q) +
1
2

p2ξ20 (p, q)
}

, (29)

and η10
(
p, q; m2

)
= η01(q, p; m2). Now we first write

ξ30(p, q) as

ξ30 (p, q)

=
C1

2

{
(p · q)
p2q2

[
Z2

(
(p− q)2 ; m2

)
− Z2

(
p2; m2)]

− 1
p2

[
Z2

(
(p− q)2 ; m2

)
− 2η10

(
p, q; m2)]

+
(

p2 − (p · q)
p2

)
ξ20 (p, q)

}
, (30)

and ξ03(q, p) = ξ30(p, q). On the other hand, ξ21(p, q) can
be given by

ξ21 (p, q)

=
C1

2

{
− 1

q2

[
Z2

(
(p− q)2 ; m2

)
− Z2

(
p2; m2)]

+
(p · q)
p2q2

[
Z2

(
(p− q)2 ; m2

)
− 2η10

(
p, q; m2)]

+
(

q2 − (p · q)
q2

)
ξ20 (p, q)

}
, (31)

and ξ12 (q, p) = ξ21(p, q). At this point it is interesting to
note that the functions ξnm(p, q) corresponding to a certain
value for n + m are written in terms of those having the
summation n + m decreased by one unity, which are then
given in terms of those corresponding to n + m decreased
by two units and so on until in the end, all of them are in
fact combinations of Zk(p2; m2) functions (which can be
reduced to Z0(p2; m2)) plus ξ00(p, q). In special kinematical
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situations the function ξ00(p, q) can be decomposed in a
summation involving Zk(p2; m2) having negative values
for k. A simple illustration can be given in the situation
p2 = q2 = 0 (external massless particles on the mass shell).
In this case we get

ξ00 =
Z−1(S; m2)

S
,

where S = −2(p · q). However, in general ξ00(p, q) can be
written in terms of Z−k(p2; m2) plus a term which cannot
be decomposed into two-point functions structures in all
the kinematical situations. For the purposes of the present
work we will not need such kind of relations. At this point
it is interesting to observe, given the preceding comments,
that the functions ξnm(p, q) possess imaginary parts with
thresholds at the kinematical points (here m1, m2 and m3
are masses carried by the propagators),

p2 = (m1 + m2)2, (32)

q2 = (m1 + m3)2, (33)

(p− q)2 = (m2 + m3)2, (34)

which can be easily noted in the decompositions of ξnm(p, q)
corresponding to a specific value of n+m in terms of those
having n + m− 1, where the functions Zk(p2; m2) appear
with their thresholds. Such properties, as it is well-known,
are required by unitarity: the amplitudes must develop
an imaginary part at the kinematical point where both
particles at a vertex are on their mass shell. It is also
important to note that the ξnm(p, q) functions are not
defined at the kinematical points where one of the momenta
is taken to zero or at the kinematical situation where both
momenta are equal. This fact can be easily noted if we
observe that, in these situations the functions ξnm(p, q)
become derivative of Zk(p2; m2) which is not defined at the
complex threshold. Such situations are related to soft limits
for the external particles. After these important remarks
we now consider some properties of the ξnm(p, q) functions
which are very useful when Ward identities verifications
are in order. For these purposes it is interesting to note
that some combinations of the explicit expressions given
for ξnm(p, q) functions are reduced to simple expressions.
They are
(i) n + m = 1:

q2ξ01 (p, q) + (p · q) ξ10 (p, q)

= − 1
2

Z0

(
(p− q)2 ; m2

)

+
1
2

Z0
(
p2; m2)+

1
2

q2ξ00 (p, q) , (35)

(ii) n + m = 2:

q2ξ02 (p, q) + (p · q) ξ11 (p, q)

= − 1
4

Z0

(
(p− q)2 ; m2

)

+
1
2

η00
(
p, q; m2)+

1
2

q2ξ01 (p, q) , (36)

q2ξ11 (p, q) + (p · q) ξ20 (p, q)

= − 1
2

Z1

(
(p− q)2 ; m2

)

+
1
2

Z1
(
p2; m2)+

1
2

q2ξ10 (p, q) , (37)

(iii) n + m = 3:

q2ξ21 (p, q) + (p · q) ξ30 (p, q)

= − 1
2

Z2

(
(p− q)2 ; m2

)

+
1
2

Z2
(
p2; m2)+

1
2

q2ξ20 (p, q) , (38)

q2ξ03 (p, q) + (p · q) ξ12 (p, q)

= − 1
2

Z2

(
(p− q)2 ; m2

)

+η01
(
p, q; m2)+

1
2

q2ξ02 (p, q) , (39)

q2ξ12 (p, q) + (p · q) ξ21 (p, q)

=
1
2

Z2

(
(p− q)2 ; m2

)
− 1

4
Z0

(
(p− q)2 ; m2

)

+
1
2

η10
(
p, q; m2)+

1
2

q2ξ11 (p, q) . (40)

In addition, it is also useful to note similar relations in-
volving the ηnm(p, q; m2) functions like, for example,

q2η01
(
p, q; m2)+ (p · q) η10

(
p, q; m2)

= − (p− q)2

×
[
Z2

(
(p− q)2 ; m2

)
− 1

4
Z0

(
(p− q)2 ; m2

)]

+p2
[
Z2
(
p2; m2)− 1

4
Z0
(
p2; m2)]

+
1
2

q2η00
(
p, q; m2) . (41)

Another set of relations can be obtained by changing p↔
q in the relations above and using the properties of the
functions ξnm(p, q) and ηnm(p, q; m2) under this symmetry.
As an example consider the relation (35) with the change
p↔ q. In this case, since ξ01 (p, q)↔ ξ10(p, q), ξ00 and Z0
remain unchanged, we get

p2ξ10 (p, q) + (p · q) ξ01 (p, q)

= − 1
2

Z0

(
(p− q)2 ; m2

)
+

1
2

Z0
(
q2; m2)

+
1
2

p2ξ00 (p, q) . (42)

Furthermore, note that when on the left hand side we have
ξnm(p, q) having n + m = 3, on the right hand side we
will have only functions with n + m = 2, and so on. Such
type of structures are precisely the expected ones when
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the Ward identities are considered. It is clear that other
functions corresponding to higher values of n and m, and
analogous relations among them can be obtained. In the
final section, Sect. 9, we will show how to generalize all the
above functions and their relations to an arbitrary number
of points. For the present purposes the ξnm(p, q) given
above will be enough.

4.3 Basic four-point structure functions

In the same way that the explicit calculation of three-point
functions admits a systematization in terms of ξnm(p, q)
and ηnm(p, q; m2) functions, it is possible to introduce an
analogous set of basic functions. They are defined as

ζnml (p, q, r) (43)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

× xn
1xm

2 xl
3

[Q (p, x1; q, x2; r, x3)]
2 ,

ξnml (p, q, r) (44)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

xn
1xm

2 xl
3

Q (p, x1; q, x2; r, x3)
,

ηnml

(
p, q, r; m2)

=
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

× [xn
1xm

2 xl
3
]
ln
(

Q (p, x1; q, x2; r, x3)
−m2

)
, (45)

where

Q (p, x1; q, x2; r, x3)

= p2x1 (1− x1) + q2x2 (1− x2) + r2x3 (1− x3)

−2 (p · q) x1x2 − 2 (p · r) x1x3 − 2 (q · r) x2x3

−m2.

All the functions of the set ζnml(p, q, r) can be, in the end,
reduced to the most simple ones, ζ000(p, q, r) and (more ξ00
and Z0 functions). The functions ξnml(p, q, r), on the other
hand, can be reduced to ξ000(p, q, r) (and η00). As examples
of such reductions let us consider those corresponding to
n + m + l = 1. They can be written as follows.
(i) Functions ζnml:

ζ100 (p, q, r)

= C−1
2

{[
q2r2 − (q · r)2

]
[ξ00 (s, u)− ξ00 (q, r)]

+
[
(p · r) (q · r)− r2 (p · q)]

× [ξ00 (s,−t)− ξ00 (p, r)]

+
[
(p · q) (q · r)− q2 (p · r)] [ξ00 (u, t)− ξ00 (p, q)]

+
[
p2
(
q2r2 − (q · r)2

)
+q2 ((p · r) (q · r)− r2 (p · q))
+r2 ((p · q) (q · r)− q2 (p · r))]ζ000 (p, q, r)

}
. (46)

Note that ζ010 (p, q, r) = ζ100(q, p, r) and ζ001 (p, q, r) =
ζ100 (r, q, p) . In the above expression we have defined

C2 = 2
{

p2q2r2 + 2 (p · q) (p · r) (q · r)

− p2 (q · r)2 − q2 (p · r)2 − r2 (p · q)2
}

,

and s = p− q , u = p− r and t = q − r.
(ii) Functions ξnml:

ξ100 (p, q, r)

= C−1
2

{[
q2r2 − (q · r)2

]
× [η00

(
q, r; m2)− η00

(
s, u; m2)]

+
[
(p · r) (q · r)− r2 (p · q)]

× [η00
(
p, r; m2)− η00

(
s,−t; m2)]

+
[
(p · q) (q · r)− q2 (p · r)]

× [η00
(
p, q; m2)− η00

(
u, t; m2)]

+
[
p2
(
q2r2 − (q · r)2

)
+q2 ((p · r) (q · r)− r2 (p · q)) (47)

+r2 ((p · q) (q · r)− q2 (p · r))]ξ000 (p, q, r)
}

.

Here we have ξ010 (p, q, r) = ξ100(q, p, r) and ξ001 (p, q, r) =
ξ100(r, q, p).
(iii) Functions ηnml:

η000
(
p, q, r; m2)

=
1
3
[
η10
(
s,−t; m2)+ η01

(
s,−t; m2)+ η10

(
s, u; m2)]

− 2
3

[
1
6

+ m2ξ000 (p, q, r)
]

+
1
3

p2ξ100 (p, q, r)

+
1
3

q2ξ010 (p, q, r)

+
1
3

r2ξ001 (p, q, r) , (48)

η100
(
p, q, r; m2)

=
1
4
[
η10
(
s,−t; m2)− η11

(
s,−t; m2)

+ η10
(
u, t; m2)− η11

(
u, t; m2)− η20

(
u, t; m2)]

− 1
2

[
1
24

+ m2ξ100 (p, q, r)
]

+
p2

4
ξ200 (p, q, r)

+
q2

4
ξ110 (p, q, r) +

r2

4
ξ101 (p, q, r) . (49)
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Again we can note that

η010(p, q, r; m2) = η100(q, p, r; m2),

and η001(p, q, r; m2) = η100(r, q, p; m2).
The systematization obtained through the functions

ζnml(p, q, r), ξnml(p, q, r) and ηnml(p, q, r; m2) is enough
to write all four-point amplitudes. In order to verify the
Ward identities someproperties of these functions are useful
too. For the present purposes the following properties are
sufficient:
(i) n + m + l = 1:

(r · p) ζ100 (p, q, r) + (r · q) ζ010 (p, q, r)

+r2ζ001 (p, q, r) (50)

=
1
2

ξ00 (u, t)− 1
2

ξ00 (p, q) +
1
2

r2ζ000 (p, q, r) ,

(p · r) ξ100 (p, q, r) + (q · r) ξ010 (p, q, r)

+r2ξ001 (p, q, r) (51)

= − 1
2

η00
(
u, t; m2)+

1
2

η00
(
p, q; m2)

+
1
2

r2ξ000 (p, q, r) .

(ii) n + m + l = 2:

(r · p) ζ200 (p, q, r) + (r · q) ζ110 (p, q, r)

+r2ζ101 (p, q, r) (52)

=
1
2

ξ10 (u, t)− 1
2

ξ10 (p, q) +
1
2

r2ζ100 (p, q, r) ,

(r · q) ζ020 (p, q, r) + (r · p) ζ110 (p, q, r)

+r2ζ011 (p, q, r) (53)

=
1
2

ξ01 (u, t)− 1
2

ξ01 (p, q) +
1
2

r2ζ010 (p, q, r) ,

r2ζ002 (p, q, r) + (r · q) ζ011 (p, q, r)

+ (r · p) ζ101 (p, q, r)

=
1
2

ξ00 (u, t)− 1
2

ξ10 (u, t)− 1
2

ξ01 (u, t)

− 1
2

ξ000 (p, q, r) +
1
2

r2ζ001 (p, q, r) , (54)

r2ξ101 (p, q, r) + (r · q) ξ110 (p, q, r)

+ (r · p) ξ200 (p, q, r)

= − 1
2

η10
(
u, t; m2)+

1
2

η10
(
p, q; m2)

+
1
2

r2ξ100 (p, q, r) , (55)

r2ξ002 (p, q, r) + (r · q) ξ011 (p, q, r)

+ (r · p) ξ101 (p, q, r)

= − 1
2

η00
(
u, t; m2)+

1
2

η10
(
u, t; m2)

+
1
2

η01
(
u, t; m2)

+
1
2

η000
(
p, q, r; m2)+

1
2

r2ξ001 (p, q, r) , (56)

r2ξ011 (p, q, r) + (r · q) ξ020 (p, q, r)

+ (r · p) ξ110 (p, q, r)

= − 1
2

η01
(
u, t; m2)+

1
2

η01
(
p, q; m2)

+
1
2

r2ξ010 (p, q, r) . (57)

(iii) n + m + l = 3:

(p · r) ζ300 (p, q, r) + (q · r) ζ210 (p, q, r)

+r2ζ201 (p, q, r)

=
1
2

ξ20 (u, t)− 1
2

ξ20 (p, q) +
1
2

r2ζ200 (p, q, r) , (58)

(q · r) ζ030 (p, q, r) + (p · r) ζ120 (p, q, r)

+r2ζ021 (p, q, r)

=
1
2

ξ02 (u, t)− 1
2

ξ02 (p, q) +
1
2

r2ζ020 (p, q, r) , (59)

r2ζ003 (p, q, r) + (p · r) ζ102 (p, q, r)

+ (q · r) ζ012 (p, q, r)

=
1
2

ξ00 (u, t)− ξ10 (u, t)− ξ01 (u, t) +
1
2

ξ20 (u, t)

+ξ11 (u, t) +
1
2

ξ02 (u, t)− ξ001 (p, q, r)

+
1
2

r2ζ002 (p, q, r) , (60)

(p · r) ζ210 (p, q, r) + (q · r) ζ120 (p, q, r)

+r2ζ111 (p, q, r)

=
1
2

ξ11 (u, t)− 1
2

ξ11 (p, q) +
1
2

r2ζ110 (p, q, r) , (61)

(p · r) ζ201 (p, q, r) + (q · r) ζ111 (p, q, r)

+r2ζ102 (p, q, r)

=
1
2

ξ10 (u, t)− 1
2

ξ20 (u, t)− 1
2

ξ11 (u, t)

− 1
2

ξ100 (p, q, r) +
1
2

r2ζ101 (p, q, r) , (62)

(p · r) ζ111 (p, q, r) + (q · r) ζ021 (p, q, r)

+r2ζ012 (p, q, r)

=
1
2

ξ01 (u, t)− 1
2

ξ11 (u, t)− 1
2

ξ02 (u, t)

− 1
2

ξ010 (p, q, r) +
1
2

r2ζ011 (p, q, r) . (63)

(iv) n + m + l = 4:

r2ζ004 (p, q, r) + (r · p) ζ103 (p, q, r)
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+ (r · q) ζ013 (p, q, r)

=
1
2

ξ00 (u, t)− 3
2

ξ10 (u, t)− 3
2

ξ01 (u, t) +
3
2

ξ20 (u, t)

+3ξ11 (u, t) +
3
2

ξ02 (u, t)− 1
2

ξ30 (u, t)− 3
2

ξ21 (u, t)

− 3
2

ξ12 (u, t)− 1
2

ξ03 (u, t)− 3
2

ξ002 (p, q, r)

+
r2

2
ζ003 (p, q, r) , (64)

r2ζ103 (p, q, r) + (r · q) ζ112 (p, q, r)

+ (r · p) ζ202 (p, q, r)

=
1
2

ξ10 (u, t)− ξ20 (u, t)− ξ11 (u, t) +
1
2

ξ30 (u, t)

+ξ21 (u, t) +
1
2

ξ12 (u, t)− ξ101 (p, q, r)

+
r2

2
ζ102 (p, q, r) , (65)

r2ζ022 (p, q, r) + (r · q) ζ031 (p, q, r)

+ (r · p) ζ121 (p, q, r)

=
1
2

ξ02 (u, t)− 1
2

ξ12 (u, t)− 1
2

ξ03 (u, t)

− 1
2

ξ020 (p, q, r) +
r2

2
ζ021 (p, q, r) , (66)

r2ζ013 (p, q, r) + (r · q) ζ022 (p, q, r)

+ (r · p) ζ112 (p, q, r)

=
1
2

ξ01 (u, t)− ξ11 (u, t)− ξ02 (u, t) +
1
2

ξ21 (u, t)

+ξ12 (u, t) +
1
2

ξ03 (u, t)− ξ011 (p, q, r)

+
r2

2
ζ012 (p, q, r) , (67)

r2ζ112 (p, q, r) + (r · q) ζ121 (p, q, r)

+ (r · p) ζ211 (p, q, r)

=
1
2

ξ11 (u, t)− 1
2

ξ21 (u, t)− 1
2

ξ12 (u, t)

− 1
2

ξ110 (p, q, r) +
r2

2
ζ111 (p, q, r) , (68)

r2ζ301 (p, q, r) + (r · q) ζ310 (p, q, r)

+ (r · p) ζ400 (p, q, r)

=
1
2

ξ30 (u, t)− 1
2

ξ30 (p, q) +
r2

2
ζ300 (p, q, r) , (69)

r2ζ031 (p, q, r) + (r · q) ζ040 (p, q, r)

+ (r · p) ζ130 (p, q, r) (70)

=
1
2

ξ03 (u, t)− 1
2

ξ03 (p, q) +
1
2

r2ζ030 (p, q, r) ,

r2ζ211 (p, q, r) + (r · q) ζ220 (p, q, r)

+ (r · p) ζ310 (p, q, r) (71)

=
1
2

ξ21 (u, t)− 1
2

ξ21 (p, q) +
1
2

r2ζ210 (p, q, r) ,

r2ζ202 (p, q, r) + (r · q) ζ211 (p, q, r)

+ (r · p) ζ301 (p, q, r)

=
1
2

ξ20 (u, t)− 1
2

ξ30 (u, t)− 1
2

ξ21 (u, t)

− 1
2

ξ200 (p, q, r) +
1
2

r2ζ201 (p, q, r) , (72)

r2ζ121 (p, q, r) + (r · q) ζ130 (p, q, r)

+ (r · p) ζ220 (p, q, r) (73)

=
1
2

ξ12 (u, t)− 1
2

ξ12 (p, q) +
1
2

r2ζ120 (p, q, r) ,

Similar relations can be obtained for other components of
the set by exploring the properties relating these functions
which are the interchanges p↔ q, p↔ r, and q ↔ r (anal-
ogously to the ξnm functions). The systematization allows
us to treat the perturbative four-point amplitudes in an ex-
act way. Let us now consider the evaluation of the integrals
(1)–(4) in terms of the systematization introduced.

5 Manipulations and calculations
of the Feynman integrals

Let us now evaluate theFeynman integrals defined in Sect. 2
following the procedure introduced in Sect. 3. For each
Feynman integral we first separate the finite and diver-
gent parts and then, by solving the finite integrals, we put
the result in terms of the basic divergent objects and basic
divergent structure functions previously defined.

5.1 One-point Feynman integrals

We start by the one having the highest degree of divergence,
which, after choosing N = 3 in the expression (6), can be
written as

I1µ (k1) = −
∫

Λ

d4k

(2π)4
2kµ (k1 · k)
[P (0, m)]2

+kν
1kα

1 kβ
1

{∫
Λ

d4k

(2π)4
4gαβkµkν

[P (0, m)]3

−
∫

Λ

d4k

(2π)4
8kαkβkµkν

[P (0, m)]4

}

−
{∫

d4k

(2π)4
6k4

1 (k1 · k) kµ

[P (0, m)]4

−
∫

d4k

(2π)4

(
k2
1 + 2k1 · k

)4
kµ

[P (0, m)]4 [P (k1, m)]

}
. (74)
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Note the absence of integrals having odd integrands as a
consequence of the even character for our implicit regulator
and note that we have removed the subscript Λ on the
two last integrals as a consequence of the connection limit
requirement. The finite integrals this way obtained can
be solved by standard techniques without any restriction.
The result is an exact cancellation between them. With this
information, we organize the divergent parts remaining in
terms of the objects defined in (7)–(11). We write then

I1µ (k1)

= −k1µ

[
Iquad(m2)

]− kβ
1 [∇βµ]− 1

3
kβ
1 kα

1 kν
1 [�αβµν ]

− 1
3

k1µkα
1 kβ

1 [∆αβ ] +
1
3

k2
1k

ν
1 [∆µν ] . (75)

It is important to note that this result is still compatible
with any regularization technique. If all the integration
is changed to 2ω dimensions we get the result which we
could find by the DR technique at this stage. The remain-
ing steps, i.e., the value of the standard divergent objects,
need to be evaluated according to that technique. If we
want to use 4D regularization, like the Pauli–Villars or the
sharp cutoff one, all divergent objects present in the ex-
pression above need to be evaluated in the specific point
of view of the particular philosophy adopted. Another as-
pect which is important to emphasize is that there is no
assumption about the ambiguities at the point we arrived
in our calculation. The choices we need to adopt, which
are arbitrary once they are not dictated by Feynman rules,
become, in principle, necessary only after our final result.
We need a specific regularization method only when we
want to attribute a value to the basic objects in (7)–(11)
and different philosophies will differ only by these results.
In particular, the objects �, ∆ and ∇ are obtained exactly
zero in the DR technique, and different from zero in the
sharp cutoff regularization [2]. In this work the discussion
of the value for the divergent objects does not play an
important role. Our intention is precisely to generate the
results in a way that they can be used in a posterior step
by all reasonable regularizations.

For the quadratic divergent integral in (1) we apply the
same recipe. Choosing in (6) the value N = 2 we get first

I1 (k1) =
∫

Λ

d4k

(2π)4
1

[P (0, m)]

+kµ
1 kν

1

{∫
Λ

d4k

(2π)4
4kµkν

[P (0, m)]3

−
∫

Λ

d4k

(2π)4
gµν

[P (0, m)]2

}

+

{∫
d4k

(2π)4
k4
1

[P (0, m)]3

−
∫

d4k

(2π)4
(k2

1 + 2k1 · k)3

[P (0, m)]3 [P (k1, m)]

}
. (76)

Again, we dropped an odd term and the subscript Λ on
the last two terms, which integration produces an exact
cancellation. Then the result is

I1 (k1) =
[
Iquad(m2)

]
+ kµ

1 kν
1 [∆µν ] . (77)

5.2 Two-point Feynman integrals

Let us now consider the integrals having two propagators.
First the simplest one; the I2 integral which, following our
strategy, can be written as

I2 (k1, k2)

=
∫

Λ

d4k

(2π)4
1

[P (0, m)]2

−
∫

d4k

(2π)4
(k2

1 + 2k1 · k)
[P (0, m)]2 [P (k1, m)]

−
∫

d4k

(2π)4
(k2

2 + 2k2 · k)
[P (0, m)]2 [P (k2, m)]

(78)

+
∫

d4k

(2π)4
(k2

1 + 2k1 · k)(k2
2 + 2k2 · k)

[P (0, m)]2 [P (k1, m)] [P (k2, m)]
,

where we have chosen, in (6), N = 1 for the two denom-
inators involved, which is very convenient, although not
unique, since it maintains the symmetry in k1 and k2. The
divergent content of this integral is present in the basic di-
vergent object Ilog(m2). The remaining integrals are finite
and yield∫

d4k

(2π)4
(k2

i + 2ki · k)
[P (0, m)]2 [P (ki, m)]

= i (4π)−2
Z0
(
k2

i ; m2) ,
(79)∫

d4k

(2π)4
(k2

1 + 2k1 · k)(k2
2 + 2k2 · k)

[P (0, m)]2 [P (k1, m)] [P (k2, m)]
(80)

= i (4π)−2 [
Z0
(
k2
1; m

2)+ Z0
(
k2
2; m

2)− Z0
(
p2; m2)] ,

where we have identified the basic functions for two-point
structures defined in (12) and defined the external momen-
tum p = k2−k1. Collecting the results, the logarithmically
divergent integral can be written as

I2 (p) = Ilog
(
m2)− i (4π)−2

Z0
(
p2; m2) . (81)

In order to evaluate I2µ(k1, k2) we first use the identity
(6) taking N = 1 for both denominators on the integral,
to obtain

I2µ (k1, k2)

= − 1
2

(k1 + k2)α

∫
Λ

d4k

(2π)4
4kαkµ

[P (0, m)]3

+
∫

d4k

(2π)4
(k2

1 + 2k1 · k)2kµ

[P (0, m)]3 [P (k1, m)]
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+
∫

d4k

(2π)4
(k2

2 + 2k2 · k)2kµ

[P (0, m)]3 [P (k2, m)]
(82)

+
∫

d4k

(2π)4
(k2

1 + 2k1 · k)(k2
2 + 2k2 · k)kµ

[P (0, m)]2 [P (k1, m)] [P (k2, m)]
.

Only an integral having an odd integrand has been removed
on the right hand side of the above equation, in addition to
the subscript Λ on the last three (finite) integrals, which,
after the integration, produce the results∫

d4k

(2π)4
(k2

i + 2k1 · k)2kµ

[P (0, m)]3 [P (ki, m)]

= i (4π)−2
kiµZ1

(
k2
1; m

2) , (83)∫
d4k

(2π)4
(k2

1 + 2k1 · k)(k2
2 + 2k2 · k)kµ

[P (0, m)]2 [P (k1, m)] [P (k2, m)]

= −i (4π)−2 [
k1µZ1

(
k2
1; m

2)+ k2µZ1
(
k2
2; m

2)
−PµZ1

(
p2; m2)] . (84)

Here P = k1 + k2 is an ambiguous combination of the
internal arbitrarymomenta. Ifwe also consider the property
(19) we can write the result as

I2µ (k1, k2) = − 1
2

P ρ [∆µρ]− 1
2

Pµ

[
Ilog
(
m2)]

+i (4π)−2 1
2

PµZ0
(
p2; m2) . (85)

Following strictly the same procedure as adopted on the
evaluation of the logarithmically and linearly divergent
cases, choosing adequate values for N in the identity (6),
after a long and tedious calculation, we get

I2µν (k1, k2)

=
1
2

[�µν ]− 1
12

p2 [∆µν ]

+
1
6

(
kα
2 kβ

2 + kα
1 kβ

2 + kα
1 kβ

1

)
[�αβµν ]

+
1
6

(gµαgνβ + gµβgνα) (kα
2 kρ

2 + kα
1 kρ

2 + kα
1 kρ

1) [∆βρ]

+
1
2

gµν

[
Iquad

(
m2)]− 1

12
gµνp2 [Ilog

(
m2)]

+
1
6

(2k2νk2µ + k1νk2µ + k1µk2ν + 2k1νk1µ)
[
Ilog
(
m2)]

+i (4π)−2
{
− 1

4
PµPνZ0

(
p2; m2) (86)

+
(
pµpν − gµνp2) [−Z2

(
p2; m2)+

1
4

Z0
(
p2; m2)]} .

Note that by using the relations (19) and (20) we can elim-
inate Z2(p2; m2) in terms of Z0(p2; m2) which represents,
in our language, the reduction of the tensor integral to
that scalar.

5.3 Three-point Feynman integrals

Now we evaluate the integrals with three propagators. The
first of them is finite and may be directly calculated. We
write the results as

I3 (p, q) = i (4π)−2
ξ00 (p, q) , (87)

where we maintained p = k2−k1, introduced the definition
q = k3 − k1, and used the definition of the ξnm(p, q) func-
tions. The second integral we consider is finite too so that
it can be directly integrated by using standard techniques.
The result can be written as

I3µ (p, q)

= −i (4π)−2 [pµξ01 (p, q) + qµξ10 (p, q)

+ k1µξ00 (p, q)] . (88)

The expression above represents an excellent opportunity
to make a comment. Given the results (24) and (25), the
equation above can be written in the form

i (4π)2 I3µ (p, q)

=
pµ

2
C1

{(
p · q − p2

p2q2

)
Z0

(
(p− q)2 ; m2

)

− p · q
p2q2 Z0

(
q2; m2)+

1
q2 Z0

(
p2; m2)

+
(

q2 − p · q
q2

)
ξ00 (p, q)

}

+
qµ

2
C1

{(
p · q − q2

p2q2

)
Z0

(
(p− q)2 ; m2

)

− p · q
p2q2 Z0

(
p2; m2)+

1
p2 Z0

(
q2; m2)

+
(

p2 − p · q
p2

)
ξ00 (p, q)

}

+k1µξ00 (p, q) . (89)

The expression above can be easily identified with the a
typical form of results obtained through the Passarino–
Veltman procedure. If the function ξ00(p, q) is identified
with the scalar integral I3, the above expression can be
viewed as a reduction of a vector integral to the corre-
sponding scalar one. The Zk(p2; m2) functions obtained
above are the finite parts of the two denominators inte-
grals resulting from the cancellation of one of such terms
when the scalar product of an external momenta with the
integrating momentum k is eliminated. Here no divergent
integral has to be solved. We put the result in the form
(89) by using properties of ξnm(p, q) functions.

The next integral of the set (3), which is I3µν (k1, k2) ,
is logarithmically divergent and we need to rewrite the
integrand in the first step. We initially have
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I3µν (k1, k2, k3)

=
∫

Λ

d4k

(2π)4
kνkµ

[P (0, m)]3

−
∫

d4k

(2π)4

(
k2
3 + 2k · k3

)
kνkµ

[P (0, m)]3 [P (k3, m)]

−
∫

d4k

(2π)4

(
k2
2 + 2k · k2

)
kνkµ

[P (0, m)]2 [P (k2, m)] [P (k3, m)]

−
∫

d4k

(2π)4

(
k2
1 + 2k · k1

)
kνkµ

[P (0, m)] [P (k1, m)] [P (k2, m)]

× 1
[P (k3, m)]

. (90)

Solving the finite integrals we can put the results in the form

I3µν (k1, k2, k3)

=
1
4

(∆µν) +
1
4

gµν

[
Ilog
(
m2)]

+i (4π)−2
{
− 1

2
gµνη00

(
p, q; m2)

+pµpνξ02 (p, q) + qµqνξ20 (p, q)

+ (pµqν + qµpν) ξ11 (p, q)
}

− (gµαgνβ + gµβgνα)

×
{

kα
1

[
Iβ
3 (p, q)

]
− 1

2
kα
1 kβ

1 [I3 (p, q)]
}

. (91)

Now let us consider the linearly divergent structure, the
integral I3λµν(k1, k2). The first step is to rewrite it using
identity (6) as we did above and next we solve the finite
integrals to write the result as

I3λµν (k1, k2, k3)

= I ′
3λµν (p, q) + I ′

3λµ ν (q, p)

− 1
12

(kα
1 + kα

2 + kα
3 ) (�αλµν)

− 1
12

(gµαgνβgλγ + gναgλβgµγ + gλαgµβgνγ)

× (kα
1 + kα

2 + kα
3 )
(
∆βγ

)
− 1

12
(gλαgµν + gναgµλ + gµαgλν) (kα

1 + kα
2 + kα

3 )

× [Ilog
(
m2)]

− (gµαgνβgλγ + gναgλβgµγ + gλαgµβgνγ)

×
{

kα
1

[
Iβγ
3 (p, q)

]
− kα

1 kβ
1 [Iγ

3 (p, q)]

+
1
3

kα
1 kβ

1 kγ
1 [I3 (p, q)]

}
, (92)

with

I ′
3λµν (p, q)

= i (4π)−2
{

1
2

(gµλpν + gνλpµ + gµνpλ) η01
(
p, q; m2)

− (pλpµqν + pλqµpν + qλpµpν) ξ12 (p, q)

−pλpµpνξ03 (p, q)
}

. (93)

In fundamental gauge theories the considered integrals are
enough to evaluate the one-loop amplitudes.

5.4 Four-point Feynman integrals

Finally, we consider the four-point function integrals. Only
one of them is a divergent structure which makes the job
easy. The first, the scalar one, can be written as

I4 (p, q, r) = i (4π)−2
ζ000 (p, q, r) , (94)

where we have identified the four-point structure functions
previously defined in (43) and also the external momentum
r = k4 − k1. Next, it is immediate to see that

I4µ (p, q, r)

= −i (4π)−2 [pµζ100 (p, q, r) + qµζ010 (p, q, r)

+rµζ001 (p, q, r)]− k1µ [I4 (p, q, r)] , (95)

and that with two Lorentz index becomes

I4µν (p, q, r)

= I ′
4µν (p, q, r) + I ′

4µν (q, p, r) + I ′
4µν (r, q, p)

− (gµαgνβ + gναgµβ)

×
{

kα
1

[
Iβ
4 (p, q, r)

]
− 1

2
kα
1 kβ

1 [I4 (p, q, r)]
}

, (96)

with

I ′
4µν (p, q, r)

= i (4π)−2
{

1
6

gµνξ000 (p, q, r) + pµpνζ200 (p, q, r)

+qµrνζ011 (p, q, r) + rµpνζ101 (p, q, r)
}

. (97)

On the other hand,

I4µνλ (p, q, r)

= I ′
4µνλ (p, q, r) + I ′

4µν λ (q, p, r) + I ′
4µνλ (r, q, p)

− (gµαgνβgλγ + gναgλβgµγ + gλαgµβgνγ)

×
{

kα
1

[
Iβγ
4 (p, q, r)

]
− kα

1 kβ
1 [Iγ

4 (p, q, r)]
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+
1
3

kα
1 kβ

1 kγ
1 [I3 (p, q, r)]

}
, (98)

where

I ′
4µνλ (p, q, r)

= −i (4π)−2

×
{

1
2

(gµνpλ + gµλpν + gνλpµ) ξ100 (p, q, r)

+pµpνpλζ300 (p, q, r)

+ (pµpνqλ + pµqνpλ + qµpνpλ) ζ210 (p, q, r)

+ (pµpνrλ + pµrνpλ + rµpνpλ) ζ201 (p, q, r)

+ (pµqνrλ + pµrνqλ) ζ111 (p, q, r)
}

. (99)

The last one we consider is the logarithmically divergent
one, which we write as

I4µναβ (p, q, r)

=
1
24
{[�αβµν ] + gαβ [∆µν ] + gαν [∆µβ ] + gαµ [∆βν ]}

+
1
24

(gαβgµν + gαµgβν + gανgµβ)
[
Ilog
(
m2)]

+I ′
4µναβ (p, q, r) + I ′

4µναβ (q, p, r) + I ′
4µνα β (r, q, p)

− (gαρgβγgµτgνλ + gβρgνγgατgµλ + gµρgβγgντgαλ

+ gνρgαγgµτgβλ)

×
{

kρ
1

[
Iγτλ
4 (p, q, r)

]
− 1

2
kρ
1kγ

1

[
Iτλ
4 (p, q, r)

]
(100)

− 1
2

kρ
1kτ

1

[
Iγλ
4 (p, q, r)

]
− 1

2
kρ
1kλ

1 [Iτγ
4 (p, q, r)]

+kρ
1kγ

1kτ
1
[
Iλ
4 (p, q, r)

]− kρ
1kγ

1kτ
1kλ

1 [I4 (p, q, r)]
}

,

where

I ′
4µναβ (p, q, r)

= I ′′
4µναβ (p, q, r) + I ′′

4νµαβ (p, q, r) + I ′′
4βνα µ (p, q, r)

I ′′
4µναβ (p, q, r)

= i (4π)−2
{
− 1

12
gαµgβνη000

(
p, q, r; m2)

+
1
2

(gµαpνpβ + gνβpµpα) ξ200 (p, q, r)

+
1
2

[gµα (qνrβ + rνqβ) + gνβ (qµrα + rµqα)]

×ξ011 (p, q, r)

+
1
3

pµpνpαpβζ400 (p, q, r)

+
(

1
3

rαqµqνqβ + rµqνqαqβ

)
ζ031 (p, q, r)

+
(

1
3

qαrµrνrβ + qµrνrαrβ

)
ζ013 (p, q, r)

+ (qµrνqαrβ + rµqνrαqβ) ζ022 (p, q, r)

+ (pµqνpαrβ + pµrνpαqβ + qµpνrαpβ + rµpνqαpβ)

×ζ211 (p, q, r)
}

. (101)

With the above results for the Feynman integrals at hand
we can perform all the one-loop amplitudes for one, two,
three and four fermionic propagators in the context of
fundamental gauge theories. In the next section we evaluate
some representative amplitudes involving vector vertices.

6 Physical amplitudes

In the preceding sections we have considered the evalua-
tion of the Feynman integrals introduced in Sect. 2, which
are crucial for the one-loop calculation in the context of
fundamental gauge theories like QED. All the integrals
have been written in terms of the set of divergent objects;
�αβµν , ∆µν ,∇µν , Ilog(m2), and Iquad(m2), defined in (7)–
(11) and in terms of the functionsZk(p2; m2), ξnm(p, q), and
ζnml(p, q, r) defined in (12), (22), and (43) for two-, three-
and four-point functions respectively. By using properties
relating the above cited functions, all one-loop amplitudes
can be reduced to a combination of only three basic pieces:
Z0(p2; m2), ξ00(p, q), and ζ000(p, q, r). In the present sec-
tion we evaluate some representative amplitudes of the
perturbative calculations by using the systematization in-
troduced in the preceding sections. We consider an example
for each number of points taking the amplitude correspond-
ing to the highest degree of divergence. With this attitude
we have an opportunity to use all the ingredients we have
introduced in our proposed systematization. In the next
section we consider the relations among Green’s functions,
ambiguities and Ward identities. First we adopt the very
general definition for such structures.
(I) One-point functions:

T i1 (k1) =
∫

d4k

(2π)4
Tr
{

Γi1

1
P ′ (� k1, m)

}
, (102)

(II) Two-point functions:

T i1i2 (k1, k2) (103)

=
∫

d4k

(2π)4
Tr
{

Γi1

1
P ′ (� k1, m)

Γi2

1
P ′ (� k2, m)

}
,

(III) Three-point functions:

T i1i2i3 (k1, k2, k3)

=
∫

d4k

(2π)4
Tr
{

Γi1

1
P ′ (� k1, m)

×Γi2

1
P ′ (� k2, m)

Γi3

1
P ′ (� k3, m)

}
. (104)
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(IV) Four-point functions:

T i1i2i3i4 (k1, k2, k3, k4)

=
∫

d4k

(2π)4
Tr
{

Γi1

1
P ′ (� k1, m)

(105)

×Γi2

1
P ′ (� k2, m)

Γi3

1
P ′ (� k3, m)

Γi4

1
P ′ (� k4, m)

}
,

where
[P ′ (� ki, m)]−1 = (� k+ � ki)−m

is the spin 1/2 free-fermion propagator and ΓS = 1,
ΓP = γ5, ΓV = γµ, ΓA = γµγ5, and ΓT = σµν are the
vertices. Now we consider particular examples belonging
to the general set of amplitudes defined above.

6.1 The vector one-point function

We start considering the evaluation of the Green’s function
containing only one fermionic propagator and the vector
vertex operator ΓV = γµ,

TV
µ (k1) =

∫
d4k

(2π)4
Tr
{

γµ
1

P ′ (� k1, m)

}
, (106)

which, after the evaluation of Dirac traces involved, can
be written as

TV
µ (k1) = 4 {I1µ (k1) + k1µ [I1 (k1)]} , (107)

where we have used the definitions contained in (1). From
the above equation we note that only two divergent inte-
grals have appeared, having cubic and quadratic degrees
of divergence, which have been considered in Sect. 5. By
using the results (75) and (77) we get

TV
µ (k1) = 4

{
−kβ

1 [∇βµ]− 1
3

kβ
1 kα

1 kν
1 [�αβµν ] (108)

+
1
3

k2
1k

ν
1 [∆νµ] +

2
3

k1µk1αk1β

[
∆αβ

]}
.

The amplitude, as promised, has been written in terms of
the objects belonging to our systematization. Let us now
consider an example of two-point functions.

6.2 The vector–vector two-point function

If one wants to consider a representative Green’s function
of the perturbative calculation, concerning the consistency
in the manipulations and calculations involving divergent
Feynman integrals, certainly there is no better one than
the vector–vector two-point function related to the QED
vacuum polarization tensor, which is given by

TV V
µν (k1, k2) =

∫
d4k

(2π)4
Tr
{

γµ
1

P ′ (� k1, m)
γν

1
P ′ (� k2, m)

}
.

(109)

After the traces evaluation we get

TV V
µν (k1, k2) = 4 {2 [I2µν (k1, k2)] + Pν [I2µ (k1, k2)]

+Pν [I2µ (k1, k2)]

+ (k2µk1ν + k1µk2ν) [I2 (k1, k2)]}
+4gµν

[
TPP (k1, k2)

]
, (110)

where

TPP (k1, k2) = −2
{
I1 (k1) + I1 (k2)− p2 [I2 (k1, k2)]

}
.

Here we have identified the term proportional to gµν , after
the traces for the V V two-point function are taken, with
that corresponding to the PP amplitude. Such type of
decomposition is always possible and we will make use of
it in future calculations as a part of our systematization.

Next, in order to complete the calculation we substitute
the results obtained in Sect. 5 for the involved Feynman
integrals, (77), (81), (85), and (86). The result can be put
in the simple form

TV V
µν (k1, k2)

=
4
3
(
p2gµν − pµpν

)
×
{

Ilog(m2)− i (4π )−2
[

1
3

+
2m2 + p2

p2 Z0
(
p2; m2)]}

+Aµν (k1, k2) , (111)

where we have defined

Aµν (k1, k2)

= 4[∇µν ] + pαpβ

{
1
3

[�αβµν ] +
1
3

gαν [∆µβ ]

+ gαµ [∆βν ]− gµν [∆αβ ]− 2
3

gαβ [∆µν ]
}

+
(
pαP β − Pαpβ

)
×
{

1
3

[�αβµν ] +
1
3

gνα [∆µβ ] +
1
3

gαµ [∆βν ]
}

+PαP β {[�αβµν ]− gµβ [∆να]− gαµ [∆βν ]

− 3gµν [∆αβ ]} . (112)

Let us now consider a three-point function.

6.3 The triple vector three-point function

As an example of calculation of a Green’s function of the
perturbative calculations having three fermionic propaga-
tors, we consider the triple vector three-point function,
given by

TV V V
βνα (k1, k2, k3)

=
∫

d4k

(2π)4
Tr
{

γβ
1

P ′ (� k1, m)
γν

1
P ′ (� k2, m)

γα
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× 1
P ′ (� k3, m)

}
, (113)

which can be conveniently written as

TV V V
βνα (k1, k2, k3)

= 4 [Tβνα] + gνα

[
TV PP

β (k1, k2, k3)
]

(114)

+gβν

[
TPPV

α (k1, k2, k3)
]
+ gβα

[
TPV P

ν (k1, k2, k3)
]
.

Again the V PP structure appearing must be understood
as a compact representation for the terms involved in the
traces. The introduced tensor Tβνα, on the other hand, is
given by

Tβνα

= 16 [I3βνα (k1, k2, k3)]

+8 (k2 + k3)α [I3βν (k1, k2, k3)]

+8 (k1 + k2)ν [I3βα (k1, k2, k3)]

+8 (k1 + k3)β [I3να (k1, k2, k3)]

+4 [k1α (k2 − k3)ν + k1ν (k2 + k3)α

+ (k3αk2ν + k2αk3ν)] [I3β (k1, k2, k3)]

+4
[
k1β (k2 + k3)α − k1α (k2 − k3)β

+ k2αk3β + k3αk2β ] [I3ν (k1, k2, k3)]

+4
[
k1β (k2 + k3)ν + k1ν (k2 + k3)β

+ k2νk3β − k3νk2β ] [I3α (k1, k2, k3)]

+4 [k1β (k2νk3α + k3νk2α)

+k1ν (k2αk3β + k2βk3α)

+ k1α (k2νk3β − k3νk2β)] [I3 (k1, k2, k3)] . (115)

In order to complete the calculation the substitution of
the results for the Feynman integrals appearing in the
expression above becomes necessary only. By using the
results (92), (91), (88), and (87), we write the tensor Tβνα as

Tβνα

= T ′
βνα + {gαν (qβ + pβ) + gαβ (pν − 2qν)

+ gβν (qα − 2pα)}
[

2
3

Ilog
(
m2)]

+4 {gβνqα + gαβpν + gαν (qβ + pβ)} (−η00)

+4 (gαβpν + gνβpα + gανpβ) (2η01)

+4 (gαβqν + gνβqα + gανqβ) (2η10)

+4pβpνpα (4ξ02 − 4ξ03)

+4qβqαqν (4ξ20 − 4ξ30)

+4pβpαqν (2ξ11 − 4ξ12)

+4qβpαqν (2ξ11 − 4ξ21)

+4pβqαqν (2ξ20 + 2ξ11 − 4ξ21 − 2ξ10)

+4qβpαpν (2ξ02 + 2ξ11 − 4ξ12 − 2ξ01)

+4pβpνqα (4ξ11 + 2ξ02 − 4ξ12 − 2ξ01)

+4qβqαpν (4ξ11 + 2ξ20 − 4ξ21 − 2ξ10) , (116)

where

T ′
βνα = − 1

3
(kη

1 + kη
2 + kη

3 ) (�ηβνα)

+
1
6

(qβ + pβ) (�αν)

− 1
6

(2qν − pν) (�αβ)− 1
6

(2pα − qα) (�βν) .

On the other hand, we get

TV PP
β (p, q)

= −2 (p + q)β

[
Ilog
(
m2)]

+2i (4π)−2
qβ

{
Z0
(
q2; m2)+ p2ξ00 (p, q)

+
(
(p− q)2 − p2 − q2

)
ξ10 (p, q)

}
−2i (4π)−2

pβ

{
Z0
(
p2; m2)+ q2ξ00 (p, q)

+
(
(p− q)2 − p2 − q2

)
ξ01 (p, q)

}
, (117)

TPPV
ν = 2 (2qν − pν)

[
Ilog
(
m2)]

−2i (4π)−2
qν

{
Z0

(
(p− q)2 ; m2

)
+ Z0

(
q2; m2)

+p2 (ξ00) +
(
q2 − p2 + (p− q)2

)
(ξ10)

}
+2i (4π)−2

pν

{
Z0
(
p2; m2)− q2 (ξ00)

+
(
p2 − q2 − (p− q)2

)
(ξ01)

}
, (118)

TPV P
α = 2 (2pα − qα)

[
Ilog
(
m2)]

+2i (4π)−2
qα

{
Z0

(
(p− q)2 ; m2

)
+ p2 (ξ00)

+
(
q2 − p2 − (p− q)2

)
(ξ10)

}
−2i (4π)−2

pα

{
Z0

(
(p− q)2 ; m2

)
+ Z0

(
p2; m2)

+q2 (ξ00) +
(
p2 − q2 + (p− q)2

)
(ξ01)

}
, (119)

which completes the calculation of the V V V amplitude.
Finally, we consider the evaluation of the four-point func-
tion.

6.4 The four-vector four-point function

As an example of a calculation of a Green’s function of
the perturbative calculations having four fermionic prop-
agators, we consider the four-vector four-point function,
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given by

TV V V V
µναβ (k1, k2, k3, k4)

=
∫

d4k

(2π)4
Tr
{

γµ
1

P ′ (� k1, m)
γν

1
P ′ (� k2, m)

γα

× 1
P ′ (� k3, m)

γβ
1

P ′ (� k4, m)

}
. (120)

After performing the Dirac traces, and some algebraic ef-
fort, it is convenient to identify the decomposition

TV V V V
µναβ (p, q, r)

= Tµναβ (p, q, r) + gαβ

[
TV V PP

µν (p, q, r)
]

+gµν

[
TPPV V

αβ (p, q, r)
]
+ gνα

[
TV PPV

µβ (p, q, r)
]

+gνβ

[
TV PV P

µα (p, q, r)
]
+ gµα

[
TPV PV

νβ (p, q, r)
]

+gµβ

[
TPV V P

να (p, q, r)
]

(121)

− (gµνgαβ + gµβgνα − gµαgνβ)
[
TPPPP (p, q, r)

]
,

where we have identified the terms in the traces operation
proportional to tensor metrics with those corresponding to
the four-point function amplitudes V V PP and PPPP . In
addition we have introduced the tensor Tµναβ

Tµναβ

= 8 [I4µναβ (p, q, r)] + 4pν [I4µαβ (p, q, r)]

+4rµ [I4ναβ (p, q, r)]

+4 (r + q)β [I4µνα (p, q, r)]

+4 (p + q)α [I4µνβ (p, q, r)]

+2
[
rβ (p + q)α − rα (p− q)β + qβpα + qαpβ

]
× [I4µν (p, q, r)]

+2 (pνrµ − pµrν) [I4αβ (p, q, r)] + 2 (pνqα + pαqν)

× [I4µβ (p, q, r)]

+2 [rβpν + rνpβ + pνqβ − qνpβ ] [I4µα (p, q, r)]

+2 (rβqµ + rµqβ) [I4να (p, q, r)]

+2
[
rα (p− q)µ + rµ (p + q)α

]
[I4νβ (p, q, r)]

+ [pν (qαrβ + rαqβ) + rν (qβpα + qαpβ)

+ qν (rβpα − rαpβ)] [I4µ (p, q, r)]

+ [pµ (rβqα + rαqβ) + rµ (qβpα + qαpβ)

+ qµ (rβpα − rαpβ)] [I4ν (p, q, r)]

+ [rµ (qβpν − qνpβ)− pµ (rνqβ + rβqν)

+ qµ (rβpν + rνpβ)] [I4α (p, q, r)]

+ [rµ (pνqα + pαqν)− qµ (pνrα + pαrν)

+ pµ (rαqν − rνqα)] I [4β (p, q, r)] . (122)

From the results of the integrals listed in Sect. 5 it is an
easy task, but a tedious one, to obtain expressions for the
above amplitudes. We do not present explicit expressions
for these calculations because their length is prohibitive.
As an example, by using the results (94), (87), and (81)
we can write out the four-point PPPP amplitude as

TPPPP

= 4
[
Ilog
(
m2)]

−2
[
Z0
(
u2, m2)+ Z0

(
q2, m2)]− 2 (r · p) ξ00 (r, p)

−2
[
q2 + (r · p)− (r · q)− (p · q)] ξ00 (u, t)

−2
[
r2 − (r · q)] ξ00 (r, q)

−2
[
p2 − (p · q)] ξ00 (p, q)

+
(
r2s2 − q2u2 + p2t2

)
ζ000 (p, q, r) . (123)

Our main purpose have been, at this point, fulfilled which
is to show how the proposed systematization works in the
calculation of physical amplitudes. However, another im-
portant aspect involved in perturbative calculations can be
also considered which, within the context of our procedure,
became very simple and transparent: that is the verification
of relations among the Green’s functions and, consequently,
of the associated Ward identities. We perform such a task
in the next section.

7 Relations among Green’s functions

The procedure which we have described to systematize the
perturbative calculations in QFT is undoubtedly very gen-
eral once no particular assumptions have been made in the
intermediary steps of the calculations performed when the
involved integrals are divergent quantities. However, it is
easy to note that in the results obtained for the calculated
amplitudes, there are many kinds of arbitrariness which
only can be removed after the adoption of a certain set of
choices. Usually such choices are made automatically when
a regularization or equivalent philosophy is adopted. The
aim of the procedure adopted in the present discussions
is the preservation of the general character as much as
possible. Therefore, the relevant question at this moment
is the following: do the manipulations made preserve the
relations among Green’s functions which can be stated at
the level of the integrand? The answer for this question
is very relevant because the preservation of the symmetry
relations pertinent to the evaluated amplitudes are inti-
mately connected to this aspect. Having this in mind, in
the present section, we consider the verification of the re-
lations existing among the considered amplitudes without
assuming specific choices for the intrinsic arbitrariness in-
volved in the calculations, i.e., in spite of having arbitrary
pieces we will verify if the relations are preserved by the
manipulations made.

We start by considering the V V two-point function. It
is immediate to note the identity

pµ

{
γν

1
(� k + � k1)−m

γµ
1

(� k + � k2)−m

}
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= γν
1

� k+ � k1 −m
− γν

1
� k+ � k2 −m

, (124)

which, after taking the Dirac traces and integrating over
the k momentum in both sides, allows us to identify a
relation between two physical amplitudes, which is

pµTV V
µν (k1, k2) = TV

ν (k1)− TV
ν (k2). (125)

In a similar way we can also state that

pνTV V
µν (k1, k2) = TV

µ (k1)− TV
µ (k2). (126)

The above relation tells us that if we explicitly calculate the
TV V

µν (k1, k2) and after this contract the obtained expression
with the external momentum, we must identify, in the so
obtained result, the difference between two one-point vector
functions with internal lines carrying momentum k1 and k2
(which are arbitrary). We have evaluated explicitly both
amplitudes involved in the above identity so that we can
verify if the relation is preserved by the obtained results.
Contracting the expression (111) with the momentum pµ

we note that the finite part is removed and we see that

pµTV V
µν (k1, k2) = pµAµν , (127)

where Aµν was defined in (112). Next it is simple to reor-
ganize the remaining terms to see that

pµAµν = TV
ν (k1)− TV

ν (k2), (128)

pνAµν = TV
µ (k1)− TV

µ (k2), (129)

which implies that the relations between the V V two-point
function with the one-point vector function are preserved
by the manipulations made. Note that the relations are
preserved without any assumption about the undefined
quantities so that it can be preserved by any reasonable
regularization method. The constraints imposed by the
symmetry implications over the amplitudes we consider in
the next section.

Now we consider the triple vector triangle amplitude
and their relations between the V V two-point functions.
First we note the identity

pν

{
γα

1
(� k + � k1)−m

γν
1

(� k + � k2)−m
γβ

× 1
(� k + � k3)−m

}

= γν
1

� k+ � k1 −m
γβ

1
(� k + � k3)−m

−γν
1

� k+ � k2 −m
γβ

1
(� k + � k3)−m

. (130)

Again, after taking the traces and integrating in the mo-
mentum k a relation between two amplitudes of the per-
turbative calculations, the triple vector triangle and the
V V two-point function can be identified, which can be
written as

pνTV V V
βαν (k1, k2, k3) = TV V

βα (k3, k1)− TV V
βα (k3, k2) .

(131)

Similar relations can be stated taking the contraction with
the remaining external momenta. They are

(q − p)α
TV V V

βαν (k1, k2, k3)

= TV V
βν (k1, k2)− TV V

βν (k3, k1) , (132)

qβTV V V
βαν (k1, k2, k3) = TV V

αν (k1, k2)− TV V
αν (k3, k2) .(133)

In order to verify if the obtained expressions for the involved
amplitudes are compatible with the identities stated above,
we take (114) and contract with the external momenta
of the vertices. Let us start by the contraction with the
momentum pν , which is the incoming momentum according
to our convention. The contraction gives

pνTV V V
βαν

= {pα (qβ + pβ) + pβ (qα − 2pα)

+ gαβ

[
p2 − 2 (p · q)]} [ 2

3
Ilog
(
m2)]

+4
{
pβqα + gαβp2 + pα (qβ + pβ)

}
(−η00)

+4
(
gαβp2 + pβpα + pαpβ

)
(2η10)

+4 (gαβ (p · q) + pβqα + pαqβ) (2η01)

+4pβpα

{
p2 (−4ξ30) + (p · q) (−4ξ21)

}
+4qβqα

{
p2 (−4ξ12) + (p · q) (−4ξ03)

}
+4qβpα

{
p2 (−4ξ21) + (p · q) (−4ξ12)

}
+4pβqα

{
p2 (−4ξ21) + (p · q) (−4ξ12)

}
+4pβpα

{
p2 (4ξ20) + (p · q) (2ξ11)

}
+4qβqα (p · q) (4ξ02) + 4qβpα (p · q) (2ξ11)

+4pβqα (p · q) (2ξ02 + 2ξ11 − 2ξ01)

+4qβpαp2 (2ξ20 + 2ξ11 − 2ξ10)

+4pβqαp2 (4ξ11 + 2ξ20 − 2ξ10)

+4qβqαp2 (4ξ11 + 2ξ02 − 2ξ01)

+pα

[
TV PP

β

]
+ gαβ

[
pνTPPV

ν

]
+ pβ

[
TPV P

α

]
+Aµν (k1, k3)−Aµν (k3, k2) , (134)

where we have conveniently completed the divergent terms
in order to identify the Aµν terms. The next step is the use
of the properties (38), (39), and (40) in order to eliminate
the ξnm functions having n+m = 3 in favor of those having
n + m = 2. Then we get

pνTV V V
βαν

= {pα (qβ + pβ) + pβ (qα − 2pα)

+ gαβ

[
p2 − 2 (p · q)]} [ 2

3
Ilog
(
m2)]

+4pβpα

{
2Z2

(
(p− q)2 ; m2

)}
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+4qαqβ

{
2Z2

(
(p− q)2 ; m2

)
− 2Z2

(
q2; m2)}

+4qβpα

{
−2Z2

(
(p− q)2 ; m2

)
+ Z0

(
(p− q)2 ; m2

)}
+4pβqα

{
−2Z2

(
(p− q)2 ; m2

)
+ Z0

(
(p− q)2 ; m2

)}
+4
{
pβqα + gαβp2 + pα (qβ + pβ)

}
(−η00)

+4gαβ

{
p2 (2η10) + (p · q) (2η01)

}
+4pβpα

{
p2 (2ξ20) + (p · q) (2ξ11)

}
+4qβqα

{
p2 (4ξ11) + (p · q) (4ξ02)

}
+4qβpα

{
p2 (2ξ20) + (p · q) (2ξ11)

}
+4pβqα

{
p2 (2ξ11) + (p · q) (2ξ02)

}
+4pβqα

{
p2 (2ξ20) + (p · q) (2ξ11)

}
+4pβqα (p · q) (−2ξ01) + 4qβpαp2 (−2ξ10)

+4pβqαp2 (−2ξ10) + 4qβqαp2 (−2ξ01)

+pα

[
TV PP

β

]
+ gαβ

[
pνTPPV

ν

]
+ pβ

[
TPV P

α

]
+Aµν (k1, k3)−Aµν (k3, k2) . (135)

Given the obtained result, we now use the properties (36),
(37) and (41) to eliminate the ξnm functions having n+m =
2 in favor of those having n + m = 1. Furthermore we use
the results (117) and (119) to get

pνTV V V
βαν

=
2
3

[
gαβ (p− q)2 + 2 (p− q)α (p− q)β

] [
Ilog
(
m2)]

− 2
3
(
gαβq2 + 2qαqβ

) [
Ilog
(
m2)]

−2gαβ (p− q)2

×
[
4Z2

(
(p− q)2 ; m2

)
− Z0

(
(p− q)2 ; m2

)]
+2gαβq2 [4Z2

(
q2; m2)− Z0

(
q2; m2)]

+4 (p− q)β (p− q)α

×
{

2Z2

(
(p− q)2 ; m2

)
− Z0

(
(p− q)2 ; m2

)}
−2 (pβqα + qβpα)

{
Z0

(
(p− q)2 ; m2

)
− Z0

(
q2; m2)}

+4qβqα

{−2Z2
(
q2; m2)+ Z0

(
q2; m2)}

+4qβpα

{
p2 (−ξ10) + (p · q) (−ξ01)

}
+4pβqα

{
p2 (−ξ10) + (p · q) (−ξ01)

}
−2pαqβp2 (−ξ00)− 2pβqαp2 (−ξ00)

+gαβ

[
TPP (k1, k3)− TPP (k2, k3)

]
+Aµν (k1, k3)−Aµν (k3, k2) . (136)

In the last step we eliminate the ξnm functions having
n + m = 1 through the property (35) and note that the
expression above may be conveniently reorganized as

pνTV V V
βαν

=
2
3

[
gαβ (p− q)2 + 2 (p− q)α (p− q)β

] [
Ilog
(
m2)]

−4 (p− q)β (p− q)α

×
{
−2Z2

(
(p− q)2 ; m2

)
+ Z0

(
(p− q)2 ; m2

)}
−4gαβ (p− q)2

×
[
2Z2

(
(p− q)2 ; m2

)
− 1

2
Z0

(
(p− q)2 ; m2

)]

−gαβ

[
TPP (k2, k3)

]−Aµν (k3, k2)

− 2
3
(
gαβq2 + 2qαqβ

) [
Ilog
(
m2)]

+4qβqα

{−2Z2
(
q2; m2)+ Z0

(
q2; m2)}

+4gαβq2
[
2Z2

(
q2; m2)− 1

2
Z0
(
q2; m2)]

+gαβ

[
TPP (k1, k3)

]
+ Aµν (k1, k3) . (137)

Finally, from the expression (111) for the V V two-point
function we see that relation (131) is satisfied. It is not dif-
ficult to verify the relations (133) and (132) by performing
the same sequence of steps.

The procedure used above can also be adopted to
state four constraints to the four-vector Green’s function.
They are

rµTV V V V
µναβ (k1, k2, k3, k4)

= TV V V
ναβ (k1, k2, k3)− TV V V

ναβ (k2, k3, k4) , (138)

pνTV V V V
µναβ (k1, k2, k3, k4)

= TV V V
µαβ (k1, k3, k4)− TV V V

βµα (k2, k3, k4) , (139)

(q − p)α
TV V V V

µνα β (k1, k2, k3, k4)

= TV V V
µνβ (k1, k2, k4)− TV V V

µν β (k1, k3, k4) , (140)

(r − q)β
TV V V V

µνα β (k1, k2, k3, k4)

= TV V V
µνα (k1, k2, k3)− TV V V

µνα (k1, k2, k4) . (141)

In order to verify if the obtained expression (121) are com-
patible with the identities stated above, we can follow the
same steps we have performed in the one-, two- and three-
point vector functions. That is, we first contract the ampli-
tude with the external momentum attached to the respec-
tive vertex. The next step is to use the properties (64)–(73)
in order to eliminate the ζnml and ξnml functions having
n+m+ l = 4 in favor of those having n+m+ l = 3. From
the obtained result, we can use the properties (58)–(63) to
eliminate the ζnml and ξnml functions havingn+m+l = 3 in
favor of those having n+m+l = 2 and so on. The divergent
parts can be conveniently reorganized in order to allow the
identification of the two triple vector three-point functions.
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8 Ambiguities and Ward identities

In Sect. 6 we have evaluated, within the systematization
proposed, Green’s functions which are typical of the per-
turbative calculations. In particular, all the considered am-
plitudes appear in the context of QED. In all the evaluated
Green’s functions, having degrees of divergence higher than
the logarithmic one, it is possible to note the presence of
terms where the dependence on the internal momenta ap-
pear in ambiguous combinations (the summations of them).
This is expected since a shift in the integrating momen-
tum generates surfaces terms which implies that different
choices for the labels of the internal lines momenta lead
to different amplitudes, which characterizes ambiguities.
In the case of the vector one-point function TV

ν (k1) all
the terms are dependent on k1, which is arbitrary. For
the two-point function TV V

µν (k1, k2), we can identify the
ambiguous terms(

TV V
µν

)
ambig

=
(
pαP β − Pαpβ

)
× 1

3
{[�αβµν ] + gνα [∆µβ ] + gαµ [∆βν ]}

+PαP β (142)

×{[�αβµν ]− gµβ [∆να]− gαµ [∆βν ]− 3gµν [∆αβ ]} .

Finally, in the evaluation of the triple vector three-point
function we see that

(
TV V V

βνα

)
ambig

= − 1
3

(kη
1 + kη

2 + kη
3 ) (�ηβνα) . (143)

Concerning the symmetry relations the situation is similar.
The Furry theorem states that every amplitude which has
an even number of external vectors and only one species of
fermion at the internal lines must vanish identically. This
means that the amplitude TV

ν (k1) must be zero as well as
the symmetrized final states of the triple vector three-point
function, which we define as

TV →V V
βνα = TV V V

βνα (k1, k2, k3) + TV V V
βαν (l1, l2, l3) (144)

(q = l2− l1 and p = l3− l1) must vanish too. In the context
of gauge symmetries, like QED, it is required that all vector
currents are conserved. This means that all the contrac-
tions with external momenta must vanish identically. This
argument implies that for the vector one-point function

kµ
1 TV

µ (k1) = −4kµ
1

{
kβ
1 [∇βµ] +

1
3

kα
1 kβ

1 kν
1 [�αβµν ]

− 1
3

k2
1k

ν
1 [∆νµ]− 2

3
k1µk1αk1β

[
∆αβ

]}
,

= 0, (145)

for the V V two-point function,

pµTV V
νµ (k1, k2)

= 4[∇µν ] + pαpβ

{
1
3

[�αβµν ] +
1
3

gαν [∆µβ ]

+ gαµ [∆βν ]− gµν [∆αβ ]− 2
3

gαβ [∆µν ]
}

+
1
3
(
pαP β − Pαpβ

)
×{[�αβµν ] + gνα [∆µβ ] + gαµ [∆βν ]}
+PαP β

×{[�αβµν ]− gµβ [∆να]− gαµ [∆βν ]− 3gµν [∆αβ ]} ,

= TV
ν (k2, m)− TV

ν (k1, m) = 0, (146)

and for the triple vector three-point function,

(q − p)α
TV →V V

ανβ

= TV V
βν (k1, k2)− TV V

βν (k3, k1)

+TV V
νβ (l1, l2)− TV V

νβ (l3, l1)

= 0. (147)

Finally, for the symmetrized V V V V four-point function,
we must have, for example, rµTV →V V V

µναβ = 0, which implies
a condition involving triple vector three-point functions.
Similar constraints can be stated for the remaining con-
tractions. All the above conditions for the ambiguities elim-
ination and symmetry preservation can be used to select
a class of consistent regularizations: that satisfying what
we denominated consistency relations, which are

∇reg
µν = �reg

αβµν = ∆reg
µβ = 0.

Extensive discussions about this aspect can be found in [2,
24].

9 Generalizations of the finite functions
and their relationship

Through the proposed method to manipulate and calculate
divergent integrals, in the above sections we have been
learning how to systematize the finite parts of the one-,
two-, three-, and four-point integrals which are present in
the relevant amplitudes belonging to fundamental theories.
In particular,we saw that the finite parts of the integrals can
be organized in two sets of functions: the first set involving
the ln function and the second one not. Although it is not
the main purpose of this work, in this section we show how
to extend those results to an arbitrary number of points
and at the same time to unify the notation.

Let us start by defining the first set of functions as

η
(n)
i1,...,ik

(p1, . . . , pk)

=
1
n!

∫ 1

0
dx1 . . .dxk

[
xi1

1 . . . xik

k

]
[Q (p1, x1; . . . ; pk, xk)]n

×
{

ln
Q (p1, x1; . . . ; pk, xk)

−m2 −
n∑

k′=1

1
k′

}
, (148)
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and the second one, which is related to the η
(0)
i1,...,ik

func-
tions, through a derivative, as follows:

ξ
(n)
i1,...,ik

=
(−1)n

n!
∂n+1η

(0)
i1,...,ik

∂Qn+1 (149)

=
∫ 1

0
dx1 . . .dxk

xi1
1 . . . xik

k

[Q (p1, x1; . . . ; pk, xk)]n+1 ,

where k = 1, 2, 3, . . ., n = 0, 1, 2, . . ., and

Q (p1, x1; . . . ; pk, xk) (150)

=
k∑

i=1

p2
i xi (1− xi)− 2

k∑
i=1

k∑
j>i

(pi · pj) xixj −m2.

We recognize that (148) is the generalization of definitions
(12), (23) and (45) and (149) is the generalization of (22),
(44) and (43). These two classes of functions are sufficient
to systematize any result (finite part) obtained for Feyn-
man integrals for an arbitrary number of points using the
proposed approach. As an additional comment we note
that the η

(n)
i1,...,ik

functions appear only in divergent inte-
grals, having a superficial degree of divergence given by
the uppercase index n, while the ξ

(n)
i1,...,ik

appear in both,
finite and divergent.

It is a common task after evaluation of an amplitude to
verify if the symmetry content of the theory is still present
which, in general, is not trivial because of the divergences.
We have explicitly evaluated the one-, two-, three-, and
four-point vector amplitudes and verified their Ward iden-
tities. We saw that the verification of the Ward identities is
greatly simplified when convenient relations or identities
characteristic of ξ

(n)
i1,...,ik

and η
(n)
i1,...,ik

functions are iden-
tified. More specifically, we are referring to the relations
(35)–(73). Then, it is relevant to study their generaliza-
tions.

First, as a matter of notation we define

η ≡ η (p1, . . . , pk) ,

η′ ≡ η (p2, . . . , pk) ,

η′′ ≡ η (p1 − p2, . . . , p1 − pk) .

In order to achieve the desired results we can integrate (148)
by parts. By simple algebraic manipulations we can write

p2
1η

(n)
i1,...,ik

= − 1
2n!

∫ 1

0
dx1 . . .dxk

[
xi1−1

1 xi2
2 . . . xik

k

]( ∂Q

∂x1

)

×Qn

{
ln

Q

−m2 −
n∑

k′=1

1
k′

}

−
k∑

j=2

(p1 · pj)
n!

∫ 1

0
dx1 . . .dxk

×
[
xi1−1

1 . . . x
ij−1
j−1 x

ij+1
j x

ij+1
j+1 . . .

]

×Qn

{
ln

Q

−m2 −
n∑

k′=1

1
k′

}

+
p2
1

2n!

∫ 1

0
dx1 . . .dxk

[
xi1−1

1 xi2
2 . . . xik

k

]

×Qn

{
ln

Q

−m2 −
n∑

k′=1

1
k′

}
, (151)

or, in a more convenient form,

p2
1η

(n)
i1,...,ik

+ (p1 · p2) η
(n)
i1−1,i2+1,i3,...,ik

+ . . .

+ (p1 · pk) η
(n)
i1−1,i2,...,ik−1,ik+1 (152)

= − 1
2n!

∫ 1

0
dx1 . . .dxk

[
xi1−1

1 xi2
2 . . . xik

k

]( ∂Q

∂x1

)

×Qn

{
ln
(

Q

−m2

)
−

n∑
k′=1

1
k′

}
+

1
2

p2
1η

(n)
i1−1,i2,...,ik

.

Here we have to keep in mind that the conditions i1 + i2 +
. . . + ik = 1, 2, 3, . . . with i1 > 0 must be satisfied. Next,
we evaluate the first term on the right hand side, which
we call I, using integration by parts:

I =
1

(n + 1)!

∫ 1

0
dx1 . . .dxk

∂

∂x1

×
{[

xi1−1
1 xi2

2 . . . xik

k

]
Qn+1

[
ln
(

Q

−m2

)
−

n+1∑
k′=1

1
k′

]}

− i1 − 1
(n + 1)!

∫ 1

0
dx1 . . .dxk

[
xi1−2

1 xi2
2 . . . xik

k

]
Qn+1

×
[
ln
(

Q

−m2

)
−

n+1∑
k′=1

1
k′

]
. (153)

With the identity
1−

k∑
j=2

xj




i1−1

=
i1−1∑
l2=0

l2∑
l3=0

. . .

lk−1∑
lk=0

Ci1
l2...lk

xlk
k x

lk−1−lk
k−1 . . . xl2−l3

2 ,

Ci1
l2...lk

(154)

=
(−1)l2 (i1 − 1)!

(i1 − l2 − 1)! (l2 − l3)! (l3 − l4)! . . . lk!
,

we can write

I = (1− δ1,k)

×



i1−1∑
l2=0

l2∑
l3=0

. . .

lk−1∑
lk=0

Ci1
l2...lk

η
′′(n+1)
i2+l2−l3,...,ik+lk
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− δ1,i1η
′(n+1)
i2,...,nk




− (i1 − 1) η
(n+1)
i1−2,i2,...,ik

− δ1,k (1− δ1,i1)
(n + 1)!

(−m2)n+1
n+1∑
k′=1

1
k′ , (155)

where δ represents a Kronecker delta symbol. Finally, we
get a recurrence relation

p2
1η

(n)
i1,...,ik

+ (p1 · p2) η
(n)
i1−1,i2+1,i3,...,ik

+ . . .

+ (p1 · pk) η
(n)
i1−1,i2,...,ik−1,ik+1

=
δ1,k (1− δ1,i1)

2 (n + 1)!
(−m2)n+1

n+1∑
k′=1

1
k′

− (1− δ1,k)
2

×



i1−1∑
l2=0

l2∑
l3=0

. . .

lk−1∑
lk=0

Ci1
l2...lk

η
′′(n+1)
i2+l2−l3,...,ik+lk

− δ1,i1η
′(n+1)
i2,...,nk




+
1
2

(i1 − 1) η
(n+1)
i1−2,i2,...,ik

+
1
2

p2
1η

(n)
i1−1,i2,...,ik

. (156)

The corresponding relations involving the ξ
(n)
i1,...,ik

functions
are obtained from the equation above by a differentiation,
as clearly shown in (149). For completeness we show also
the result

p2
1ξ

(n)
i1,...,ik

+ (p1 · p2) ξ
(n)
i1−1,i2+1,i3,...,ik

+ . . .

+ (p1 · pk) ξ
(n)
i1−1,i2,...,ik−1,ik+1

=
(1− δ1,k)

2N

×



i1−1∑
l2=0

l2∑
l3=0

. . .

lk−1∑
lk=0

Ci1
l2...lk

×
[
(1− δ0,n) ξ

′′(n−1)
i2+l2−l3,...,ik+lk

− δ0,nη
′′(0)
i2+l2−l3,...,ik+lk

]

− δ1,i1

[
(1− δ0,n) ξ

′(n−1)
i2,...,ik

− δ0,nη
′(0)
i2,...,ik

]


− (i1 − 1)
2N

[
(1− δ0,n) ξ

(n−1)
i1−2,i2,...,ik

− δ0,nη
(0)
i1−2,i2,...,ik

]

+
δ1,k (1− δ1,i1) (1− δ0,n)

2N (−m2)n +
1
2

p2
1ξ

(n)
i1−1,i2,...,ik

, (157)

with

N =
{

n−1 if n > 0,

1 if n = 0.

Relations like the left hand side of (156) and (157)
naturally emerge when we contract a calculated amplitude
with an externalmomentum.As shownbefore, recursive use
of the above expression makes the verification of the Ward
identities an easier task. Even if anomalies are present, by
applying the above relations, the expected anomalous term
emerges in a natural way [25].

However, note that the above relations do not represent
the whole set of possibilities. Similar relations could be
found using the momentum interchanging symmetry of
the η

(n)
i1,...,ik

(and ξ
(n)
i1,...,ik

) functions

η
(n)
i1,...,ik

(p1, . . . , pk) = η
(n)
ij ,...,ij−1,i1,ij+1,... (p1 ←→ pj) ,

as we have seen in detail in Sect. 4. If we perform this
operation in (157) we get a system of equations which
we can solve showing that all n-point functions can be
reduced, in the end, only to functions with i1 = i2 = . . . =
ik = 0. Explicitly we have to solve the following system of
linear equations:




p1 · p1 p1 · p2 . . . p1 · pk

p2 · p1 p2 · p2 . . . p2 · pk

...
...

. . .
...

pk · p1 pk · p2 . . . pk · pk




×




η
(n)
i1,...,ik

η
(n)
i1−1,i2+1,i3,...,ik

...
η
(n)
i1−1,i2,...,ik−1,ik+1


 =




b1

b2
...
bk


 ,

or, in a compact notation, Aξ = B where aij = pi · pj and

b1 (p1, . . . , pk)

=
δ1,k (1− δ1,i1)

2 (n + 1)!
(−m2)n+1

n+1∑
k′=1

1
k′

− (1− δ1,k)
2

×



i1−1∑
l2=0

l2∑
l3=0

. . .

lk−1∑
lk=0

Ci1
l2...lk

η
′′(n+1)
i2+l2−l3,...,ik+lk

− δ1,i1η
′(n+1)
i2,...,nk




+
1
2

(i1 − 1) η
(n+1)
i1−2,i2,...,ik

+
1
2

p2
1η

(n)
i1−1,i2,...,ik

, (158)

or, in general, bj (p1, . . . , pk) = b1(pj ↔ p1) with i1 = ij +1
and ij = i1−1. Inverting the matrix A we get the following
recurrence relation:

η
(n)
i1,...,ik

=
k∑

j=1

a−1
1j bj =

k∑
j=1

∆1jbj

detA
, (159)
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where ∆ij is the cofactor of aij which can be easily obtained
for each specific number of points in a kinematical situation
with detA �= 0. Specifically, setting n = 0, k = 3, i1 =
1, i2 = i3 = 0 in (159) we get the reduction (29) and so
on. By recursive use of the above relation it is possible to
reduce all functions η

(n)
i1,...,ik

to functions with i1 = i2 =
. . . = ik = 0. This type of reduction is useful, for example,
in applications where we are interested in numerical results
because within this procedure we have to manipulate only
a low number of mathematical structures saving, in this
way, considerable computational time.

10 Conclusions

In the present contribution we considered a systematiza-
tion for the evaluation of Feynman integrals which are
typical of perturbative calculations in QFT’s. In the pro-
posed strategy, it is possible to avoid the use of an explicit
regulator in intermediary steps and the calculations are
performed by taking arbitrary choices for the momenta of
the internal lines. With this attitude two important types
of arbitrariness are preserved in the calculations; the choice
of the regularization and the choice of internal lines mo-
menta labels. Given this fact the results for the considered
integrals can be converted to the corresponding ones of any
specific regularization as well as other philosophies like that
which consider the evaluation of surface terms in divergent
physical amplitudes. In the proposed calculational strategy
two types of systematization are introduced: one for the
divergent parts, and another one for the finite ones.

The divergent content of all Feynman integrals are writ-
ten in terms of five objects. Two of them are the basic diver-
gent objects Ilog(m2) and Iquad(m2) which are irreducible
and will invariably be absorbed in the renormalization, in-
dependent of the mathematical form assumed which will
depend on the specific regularization adopted or could be
fitted by physical observables in effective nonrenormaliz-
able theories [24]. The remaining three divergent standard
objects �αβµν , ∆µν and ∇µν are differences between di-
vergent integrals of the same degree of divergence. Their
values are dependent on the specific regularization or the
equivalent philosophy adopted. The relevant dependence
of a perturbative calculation on the regularization resides
in the value attributed to these three objects. Concerning
the ambiguities associated to the arbitrariness involved in
the choice of labels for the internal lines momenta, the sit-
uation is also very transparent. Only terms involving the
objects �αβµν , ∆µν and ∇µν are potentially ambiguous.
The analyses of Ward identities, on the other hand, re-
vealed that all potentially violating terms are proportional
to the objects �αβµν , ∆µν and ∇µν even if they are not
always ambiguous.

The systematization for the finite parts is made by
the introduction of a set of structure functions, one for
each number of propagators. For two-point functions all
the results can be written in terms of Zk(p2; m2) which
can be reduced to Z0(p2; m2). For integrals having three
propagators the systematization is obtained through the

structure functions ξnm(p, q) and ηnm(p, q; m2). These two
sets of functions are also connected. In fact, all the func-
tions ηnm(p, q; m2) can be written in terms of ξnm(p, q)
which, in the end, can be reduced to only ξ00 (p, q) . This
means that all three-point functions can be written in
terms of ξ00(p, q) and Z0(p2; m2). These reductions, on the
other hand, involve relations among the functions ξnm(p, q),
ηnm(p, q; m2) and Zk(p2; m2) and combinations of such re-
lations are crucial for the verification of relations among
Green’s function or Ward identities having three and two
propagators. In the case of Feynman integrals having four
propagators, the systematization is obtained through the
structure functions which we call ζnml(p, q, r), ξnml(p, q, r)
and ηnml(p, q, r; m2). The last two functions can be related
to ζnml(p, q, r) which can be reduced to only ζ000(p, q, r).
This means that all four-point functions of the pertur-
bative calculations can be written in terms of ζ000(p, q, r),
ξ00(p, q) and Z0(p2, m2). Combinations of such relations are
crucial properties when the verification of relations among
Green’s functions and Ward identities involving four and
three points are considered. These systematizations can
be easily extended to higher number of points, as shown
explicitly in Sect. 9 where a set of recurrence formulae was
presented which unify the notation and generalize the rela-
tions and reductions of finite structure functions considered
in Sect. 4.

The convenience of the above mentioned systematiza-
tion has been shown in Sect. 6, where the evaluation of
physical amplitudes of the perturbative calculations was
considered and, in Sects. 7 and 8, where the relations among
the involved Green’s functions are verified. It was shown
that the calculations can be performed by taking the most
general expression for the involved amplitudes. A clear and
transparent description of the potentially ambiguous and
symmetry violating terms as well as their regularization
dependence character is obtained. Besides, such decom-
positions emphasizes in a very clear way physical aspects
relative to unitarity which are contained in the pertur-
bative amplitudes and, in addition, allows a simple sys-
tematization for the study of kinematical limits of physical
interest. Another aspect, which is important to emphasize,
is the dimensional extension of the adopted procedure. In
every previously chosen dimensions it is possible to iden-
tify the basic divergent objects and the structure functions
for the finite parts of the n-point Green’s functions, and
to construct the analogous reductions and relations iden-
tified in the present discussion to consider the relations
among Green’s functions and Ward identities associated
with them [23]. In the same way, the extension to more
than one loop is perfectly possible. New basic divergent
structures and other classes of structure function will ap-
pear.

Finally, we would like to call attention to the univer-
sal character of the proposed treatment of divergences in
perturbative calculations of QFT’s. In fact, a divergent in-
tegral is not really evaluated. Only general properties for
the divergent integrals are required to be assumed in order
to evaluate physical amplitudes in a consistent way (am-
biguity free and symmetry preserving). No explicit form
of regularization needs to be assumed for any purposes in
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perturbative calculations. Every amplitude can be viewed
on the same footing and treated in an unique way. The suc-
cess of regularization prescriptions, as well as their incon-
sistencies, can be clearly understood within the proposed
strategy. Generalizations for more general cases, like that
involving differentmasses for the propagators and two loops
as well as for other space-time dimensions, are presently
under way. In the investigations presently performed, all
the results are in perfect agreement with our expectations.
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